
EE 310 Prapun Suksompong 
8/11/00 7:04 PM CS211 note javadoc.doc  
 
 

Javadoc 
The Java API Documentation Generator 

⇒ a tool that  
• parses the declarations and documentation comments in a set of 

source files and  
• produces a set of HTML pages describing the classes, inner 

classes, interfaces, constructors, methods, and fields. 
• produces one complete document each time it is run 
• cannot modify or directly incorporate results from previous 

runs of Javadoc 
• cannot do incremental builds 
• can link to results from previous runs. 
• rely on the compiler → the HTML output corresponds exactly with 

the actual implementation, which may rely on implicit, rather 
than explicit, source code. 

• calls part of javac to compile the declarations, ignoring the 
member implementation 

• will run on .java source files that are pure stub files with no 
method bodies → can write documentation comments and run 
Javadoc in the earliest stages of design while creating the 
API, before writing the implementation 

• must be able to find all referenced classes, whether bootstrap 
classes, extensions, or user classes 

Arguments 
can be in any order 
• options ⇒ Command-line options 
• packagenames ⇒ A series of names of packages, separated by 

spaces 
o Javadoc uses -sourcepath to look for these package 

names.  
o Javadoc does not recursively traverse subpackages.  
o Wildcards such as asterisks (*) are not allowed 

• sourcefiles ⇒ A series of source file names, separated by 
spaces 

o each of which can begin with a path and contain a 
wildcard such as asterisk (*) 

o The path that precedes the source file name determines 
where javadoc will look for it  

§ Javadoc does not use -sourcepath to look for 
these source file names. 

o passing in fileName.java is identical to .\fileName.java 
o can also mix packagenames and sourcefiles 

• @files ⇒ One or more files that contain packagenames and 
sourcefiles in any order, one name per line. 

DOCUMENTATION COMMENTS for source code 
• ahead of declarations for any entity (classes, interfaces, 

methods, constructors, or fields) → Javadoc comments 
• consists of the characters between  

o the characters /** that begin the comment and  

o the characters */ that end it. 
• can continue onto multiple lines. 
• can put a comment on one line 
• are recognized only when placed immediately before class, 

interface, constructor, method, or field declarations 
• Documentation comments placed in the body of a method are 

ignored 
• Only one documentation comment per declaration statement is 

recognized 
• Don’t put an import statement between the class comment and the 

class declaration → Javadoc will ignore the class comment. 
• comment ⇒ description followed by tags 
• The text must be written in HTML 

o should use HTML entities 
o can use HTML tags  
o less-than (<) → &lt 
o greater-than (>) → &gt 
o ampersand (&)→ &amp 
o When writing documentation comments for members, it's 

best not to use HTML heading tags such as <H1> and <H2>, 
because Javadoc creates an entire structured document 
and these structural tags might interfere with the 
formatting of the generated document. 

• Leading asterisks →  
o leading asterisk (*) characters on each line are 

discarded 
o blanks and tabs preceding the initial asterisk (*) 

characters are also discarded 
o If you omit the leading asterisk on a line, all leading 

white space is removed 
• First sentence → a summary sentence, containing a concise but 

complete description of the declared entity 
o ends at  

§ the first period that is followed by  
• a blank,  
• tab, or  
• line terminator, or  

§ the first tag 
o Javadoc copies this first sentence to the member summary 

at the top of the HTML page 
• A declaration with multiple fields  

o can have only one documentation comment which is copied 
for all fields 

o if you want individual documentation comments for each 
field, you must declare each field in a separate 
statement. 

• inheriting comments ⇒ Automatic re-use of method comments 
If a method m1() in a class or interface has no doc comment or 
tags, Javadoc will instead use the comment and tags from method 
m2()  
it either overrides or implements, if any. 
• Javadoc will generate a subheading "Overrides" in the 

documentation for m(), with a link to the method it is 
overriding 



overriding 
o When a method m() in a class overrides a method in a 

superclass  
o When a method m() in an interface overrides a method 

in a superinterface  
• Javadoc will generate a subheading "Specified by" in the 

documentation for m(), with a link to the method it is 
implementing. 

o When m(), a method in a class implements a method in 
an interface 

description begins after the starting delimiter /** and continues 
until the tag section 
• cannot continue after the tag section begins 
Tag 
⇒ a special keyword within a doc comment that Javadoc can process 
• The tag section starts with the first character @ that begins a 

line (ignoring leading asterisks, white space and comment 
separator). 

• can be any number of tags 
• some types of tags can be repeated while others cannot. 
• enable you to autogenerate a complete, well-formatted API 
• start with an "at" sign (@) 
• are case-sensitive 
• must start at the beginning of a line (after any leading spaces 

and an optional asterisk) or it is treated as normal text 
• convention: tags with the same name are grouped together 
standard tags ⇒ @tag 

• must appear at the beginning of a line, ignoring leading 
asterisks, white space and comment separator (/**) 

o you can use the @ character elsewhere in the text 
and it will not be interpreted as the start of a tag 

o If you want to start a line with the @ character and 
not have it be interpreted, use the HTML entity 
&#064 

in-line tags ⇒ {@tag} 
• allowed and interpreted anywhere that text is allowed. 

@author @author  name-text 
• Adds when the -author option is used 
• may contain multiple @author tags 
• can specify  

o one name per @author tag or → Javadoc 
inserts a comma (,) and space between names 

o multiple names per tag → the entire text is 
simply copied to the generated document 
without being parsed 

{@docRoot} ⇒ the relative path to the generated document's 
(destination) root directory from any generated page 

@deprecated @deprecated  deprecated-text 
• The first sentence of deprecated-text should at 

least tell the user when the API was deprecated 
and what to use as a replacement. 

• You should include a {@link} tag (for Javadoc 
1.2 or later) that points to the replacement 
API: 

@exception @exception  class-name  description 
• a synonym for @throws 

{@ link} {@link  package.class#member  label} 
• Inserts an in-line link with visible text label 
• use &#125 for "}" inside the label 
• no limit to the number of {@link} tags allowed 

in a sentence 
• can use this tag 

o in the description part of a 
documentation comment 

o in the text portion of any tag 
@param @param  parameter-name description 

• Adds a parameter to the "Parameters" section 
• description may be continued on the next line 

@return @return  description 
• should describe the return type and permissible 

range of values 
@see @see  reference 

• Adds a "See Also" heading with a link or text 
entry that points to reference 

• A doc comment may contain any number of @see 
tags, which are all grouped under the same 
heading. 

 @see "string" 
 @see <a href="URL#value">label</a> 
 @see  package.class#member  label 



 • label 
o can contain whitespace 
o If label is omitted, then 

package.class.member will appear, 
suitably shortened relative to the 
current class and package 

• package.class#member 
o replace the dot ahead of the member name 

with a hash character (#) 
o If this name is in the documented 

classes, Javadoc will automatically 
create a link to it 

o To create links to external referenced 
classes, use the -link option 

o can be fully-qualified or partially-
qualified 

o If less than fully-qualified, Javadoc 
uses the normal Java compiler search 
order to find it 

o can contain whitespace within 
parentheses, such as between method 
arguments. 

• A space is the delimiter between 
package.class#member and label 

• spaces may be used between parameters in a 
method 

• different forms of the name 
Class → class or interface 
Type → class, interface, array, or primitive, 
method → method or constructor. 
• Referencing a member of the current class 

o @see  #field 
o @see  #method(Type, Type,...) 
o @see  #method(Type argname, Type 

argname,...) 
• Referencing another class in the current or 

imported packages 
o @see  Class#field 
o @see  Class#method(Type, Type,...) 
o @see  Class#method(Type argname, Type 

argname,...) 
o @see  Class 

• Referencing another package (fully 
qualified) 

o @see  package.Class#field 
o @see  package.Class#method(Type, 

Type,...) 
o @see  package.Class#method(Type 

argname, Type argname,...) 
o @see  package.Class 
o @see  package 

@since @since  since-text 
@serial @serial  field-description 

@serialField @serialField  field-name  field-type  field-
description 

@serialData @serialData  data-description 
@throws @throws  class-name  description 

• @throws and @exception tags are synonyms 
@version @version  version-text  

• normally refers to the version of the software 
(such as the Java 2 SDK) that contains this 
class or member. 

WHERE TAGS CAN BE USED 
All comments • @see 

• @link 
• @since 
• @deprecated 

Overview  • @see 
• {@link} 
• @since 

Package  • @see 
• {@link} 
• @since 
• @deprecated 

Class and Interface  • @see 
• {@link} 
• @since 
• @deprecated 
• @author 
• @version 

Field • @see 
• {@link} 
• @since 
• @deprecated 
• @serial 
• @serialField 

Constructor and Method • @see 
• {@link} 
• @since 
• @deprecated 
• @param 
• @return 
• @throws (@exception) 
• @serialData  

OPTIONS for command line argument 
• option names are case-insensitive, though their arguments can 

be case-sensitive 
Javadoc Options 



• -overview  path\filename 
• -public 

o Shows only public classes and members. 
• -protected 

o Shows only protected and public classes and members.  
o This is the default 

• -package 
o Shows only package, protected, and public classes and 

members 
• -private 

o Shows all classes and members 
• -help 

o Displays the online help, which lists javadoc and doclet 
command line options. 

• -doclet  class 
o If not used, javadoc uses the standard doclet for 

generating the default HTML format 
• -docletpath  classpathlist 
• -sourcepath  sourcepathlist 
• -classpath  classpathlist 
• -bootclasspath  classpathlist 
• -extdirs  dirlist 
• -verbose 

o Provides more detailed messages while javadoc is running 
o causes the printing of additional messages specifying 

the number of milliseconds to parse each java source 
file 

• -locale  language_country_variant 
o must be placed ahead (to the left) of any options 
o the only command-line option that is order-dependent 

• -encoding  name 
o If not specified, the platform default converter is 

used.  

Options Provided by the Standard Doclet 
• -d  directory 

o Specifies the destination directory where javadoc saves 
the generated HTML files 

o "d" means "destination." 
o Omitting this option causes the files to be saved to the 

current directory 
o value directory can be absolute or relative to the 

current working directory 
• -use 
• -version 

o Includes the @version text in the generated docs 
o This text is omitted by default 

• -author 
o Includes the @author text in the generated docs. 

• -splitindex 
• -windowtitle  title 
• -doctitle  title 
• -header  header 
• -footer  footer 
• -bottom  text 
• -link  extdocURL 
• -linkoffline  extdocURL  packagelistLoc 
• -group  groupheading  packagepattern:packagepattern:... 
• -nodeprecated 
• -nodeprecatedlist 
• -notree 
• -nohelp 
• -nonavbar 
• -helpfile  path\filename 
• -stylesheetfile  path\filename 
• -serialwarn 
• -charset  name 
• -docencoding  name 
GENERATED FILES 
• standard doclet generates HTML-formatted documentation 
• generates files with two types of names: 

o those named after classes/interfaces 
o those that are not (such as package-summary.html) 

Files in the latter group contain hyphens to prevent filename 
conflicts with those in the former group. 

Basic Content Pages 
• class or interface page (classname.html) for each class or 

interface 
• package page (package-summary.html) for each package 
• overview page (overview-summary.html) for the entire set of 

packages. 
o created only if you pass into javadoc two or more 

package names 
Cross-Reference Pages 
• class hierarchy page for the entire set of packages (overview-

tree.html) 



tree.html) 
o To view this, click on "Overview" in the navigation bar, 

then click on "Tree". 
• class hierarchy page for each package (package-tree.html) 

o To view this, go to a particular package, class or 
interface page; click "Tree" to display the hierarchy 
for that package 

• "use" page for each package (package-use.html) and a separate 
one for each class and interface (class-use/classname.html) 

o describes what packages, classes, methods, constructors 
and fields use any part of the given class, interface or 
package. 

o Given a class or interface A, its "use" page includes  
§ subclasses of A,  
§ fields declared as A,  
§ methods that return A, and  
§ methods and constructors with parameters of type 

A 
o access this page by first going to the package, class or 

interface, then clicking on the "Use" link in the 
navigation bar. 

• deprecated API page (deprecated-list.html) 
o listing all deprecated names 
o deprecated name is not recommended for use, generally 

due to improvements, and a replacement name is usually 
given. Deprecated APIs may be removed in future 
implementations. 

• serialized form page (serialized-form.html)  
o for information about serializable and externalizable 

classes. 
o get to this information by going to any serialized class 

and clicking "Serialized Form" in the "See also" section 
of the class description 

• index (index-*.html) of all class, interface, constructor, 
field and method names, alphabetically arranged 

Support Files 
• help page (help-doc.html) 

o describes the navigation bar and the above pages 
o can provide your own custom help file to override the 

default using -helpfile 
• index.html file 

o creates the HTML frames for display 
o This is the file you load to display the front page with 

frames.  
o This file itself contains no text content 

• frame files (*-frame.html) 
o containing lists of packages, classes and interfaces,  
o used when HTML frames are being displayed. 

• package list file (package-list) 
o a text file, not HTML  
o not reachable through any links. 

• style sheet file (stylesheet.css) 
• doc-files directory that holds any image, example, source code 

or other files that you want copied to the destination 
directory 

directory 
o not processed by Javadoc in any manner 
o not generated unless it exists in the source tree. 

HTML Frames 
• pass source files (*.java) or a single package name as 

arguments into the javadoc command → create only one frame in 
the left-hand column 

• pass into javadoc two or more package names → creates a third 
frame listing all packages, as well as an overview page 
(Detail) 

 
 
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/javadoc.html  


