Cs 211 Prapun Suksonpong
CS211 note 03. doc

8/11/00 7:14 PM
Java

The term Java is not an acronym
but adopted to reflect a favorite drink (coffee?) of many
programmers — hence Sun's logo for Java is a cup of steamn ng
cof fee.
http://java. sun. com
JDK = Java Devel opnent Kit
Java is a case-sensitive | anguage
Java code can be witten as either an application or an appl et
APl = Application Programing |Interface
The java.l ang package is automatically inported.
abstraction denotes the essential properties and behaviors of
an object that differentiate it fromother objects
Obj ect-oriented Program Design ® nodel i ng abstracti ons using
cl asses and objects
UML : Unified Mbdel i ng Language not ati on
Obj ects are mani pul ated t hrough object references (reference
val ues / references)
infix dot ‘.’ operator
everyt hing nmust be encapsul ated in cl asses
2 kind of val ues
atom c values of primtive types
ref erence val ues
Program | npl enent ati on
program keyed in from docunment ¥%Editor® programstored on a
disk in text node source code (.java)
program stored on disk in text node¥ Conpiler® program stored on
disk as a series of bytecodes (.class)
Java byte codes b a set of instructions witten for a
hypot heti cal conputer, known as Java virtual machine
Regar dl ess of the conputer you are using, the conpiler will
generate the sane Java byte code program b prograns
witten in Java are portable.
on JDK: javac O assNane.java
one .class file for each class/interface
program as series of bytecode is stored in nmenory
Yalnterpreter(—-data)® results
on JDK java nane ® invoking the main() nethod fromthe
speci fied cl ass
java : Java interpreter

bl ock ® nmny statenents contai ned between braces { }

o |If only one statenent is executed in a selection
statenment, the use of braces can inprove the clarity of
the code, even though the braces are thensel ves
redundant .

Tenpl ate for constructing a Java applicati on program
/'l heading giving details of the nane and purpose of the program
inmport java.io.*;

/'l java.io.BufferedReader, java.io.PrintWiter
cl ass C assNane

{
/1 declarations of input and out streans
static BufferedReader keyboard = new
Buf f er edReader (new | nput St r eanReader (Systemin));
static PrintWiter screen = new PrintWiter(Systemout, true);
/1 main et hod
public static void main (String[] args) throws | OException
/] readLine() in the class BufferedReader throws an
| CExcepti on
/1l args can be any nanme e.g. arg, etc.
{
/] declaration of constants
/] declaration of variables
/'l program statenents
screen. print(“Input sonething ”); screen.flush();
input = new Fl oat (keyboard. Leadl i ne()).fl oat Val ue();
screen.println(“output =" + input);
}
}

the order of the static and public keywords is irrel evant
hj ect
. has a unique identify

has its own copy of the variables declared in the class

definition

do not have names but are denoted by references

can only be manipul ated via references, which can be stored in

vari abl es

can have several references ® aliases

deletion is taken care of by the runtinme system

state: the values of variables inside

communi cate by nmessage passing

cannot contain other objects; can only have references to other

obj ects
Statenments termnated by a sem col on

; ® enpty statenent
{} ® conpound st at enent

Assi gnnent St at enent

identifier = literal;
identifier = identifier;
identifier = expression;

destination is always on the | eft-hand side

The assi gnment of one object to another of the same type does
not create a copy of the object

not e
9=a > has no neaning, since 9 is not a legal identifier

a=a+l > increase the value of the variable a by 1
Legal assignnent? (conpil e-wi se)
. At conpile tine, refA =refB will be checked by the type of the
refs not the actual type of the object that they refer to.
On the hierarchy diagram if can follow the arrow from
class/interface Bup to class/interface A, then it’'s valid
refOf Super = refOfSub is valid
/1 refOFSub = ref Of Super is not valid : conpile error
(even when the ref O Super really refers to the sub object)
refFSub = (Sub) ref O Super is valid
may cause O assCast Exception at run-tine if
. ref O Super actually refers to a super object
. ref O Super refers to object of another subclass
of that super class
The rules for reference assignnent (enforced at conpile tine)
Sour ceType srcRef;
Desti nati onType dest Ref = srcRef;
I f SourceType is a class type, valid if
o DestinationType is a superclass of the subclass
Sour ceType
o DestinationType is an interface type which is
i mpl emented by the class SourceType
If SourceType is an interface type, valid if
o DestinationType is Object
o DestinationType is a superinterface of subinterface
Sour ceType
I f SourceType is an array type, valid if
o DestinationType is bject
o DestinationType is an array type, where the el enent type
of SourceType can be converted to the el enent type of
Dest i nati onType
Type conversi on
for primtive datatypes
wi deni ng conversions are permtted
narrow ng conversions require an explicit cast
for reference val ues
0 upcasting: conversions up the inheritance hierarchy are
permtted
o downcasting: conversions down the hierarchy require
explicit casting
performed automatical ly when
the type of the expression on the right-hand side of an
assi gnment can be safely promoted to the type of the variable
on the left-hand side.
Ex not allow : int=long
cast
(DestinationType) ref;
Ex allow int = (int)long

digits may be lost in the assignnent
cast conversions are unsafe, as they may throw a
O assCast Exception at runtinme

Legal cast? (conpil e-wi se)

(super) subRef is valid
(sub) superRef is valid
o but if the superRef actually refers to a super
object, will cause runtime error: throws
C assCast Excepti on
Ex
public class O assl

public static void main (String[] args)

Aa, Bb; Cc; Dd,
a = new A();
b = new B();
/l b =(B) a //not OK wll throw a
java.l ang. d assCast Excepti on when run
a =b; //aref to subclass B object
/Il b =a; // not OK conpile error, can't inplicitly convert
Ato B

c =(0 a; //not OK conpile error, can't convert Ato C
= (B &
= new A();
/l b =(B) a //not OK wll throw a
java.l ang. d assCast Excepti on when run
b
a

d new D();

a = d;

11 = (B) a; //not OX, will throw a
java.l ang. d assCast Excepti on when run

}

}
class [}
class A{}

class B extends A{}
class D extends A{}

i nst anceof
ref instanceof DestinationType
true : if ref can be cast to the DestinationType (class,

interface, array type)
° the correspondi ng cast expression is valid
false : the cast involving the operands will throw a
Cl assCast Excepti on
o literal “null” is not an instance of any reference type
o any array of non-primtive type is an instance of both
Obj ect and Object[] types
0 an instance of a superclass is not an instance of its
subcl ass
0 an instance of a class cannot be of an interface type
which is not inplenented by the class of the object
0o an instance of a class is not an instance of a totally
unrel ated cl ass
= This can pass the conpile check by reference one
of then via an bject reference
what matters is the class of the actual object denoted by the
reference at runtime, not the type of the reference

conpil e time check:

ref Destinati onType = (Destinati onType)ref SourceType
r ef Sour ceType i nstanceof DestinationType
whet her a ref SourceType and a reference of DestinationType can
denote objects of a class (or its subclasses) where this class
is a coomobn subtype of both SourceType and Destinati onType.
If this is not the case, then obviously there is no
rel ati onshi p between the types, and neither the cast nor the
i nst anceof operator application wuld be valid
Therefore, if no common subtype
b conpiler will reject casting refSourceType to type
Desti nati onType or applying the instanceof operator

d ass
The name of the class containing the main nmethod nust be the
sanme as the the name given to the programfile (omtting the
.java suffix).
convention: the name of a class should always begin with an
upper -case letter.
(modifier) class O assName <extends ..»> <inplenents,.>{}
may contain
0o data ® properties/attributes ® variables/fields
constants
class data: static
when class is | oaded, static variables
are initialized to their default val ues
if no other explicit initializationis
provi ded
initialized when the class is | oaded at
runtime
instance variables b represent the data for a
particul ar object
Each object will have its own set of
i nstance vari abl es, which represent the
state of an object
o nmethods ® behaviors ® operation
constructors
class methods: static
i nstance net hods
or both
access static nmenbers
o assNare. nenber Nane
0 O assObj ect Ref . mrenber Nane
access instance nenbers ® d assbj ect Ref. nenber Nane only
static menber
can access these by using the class nane, or through object
references of the class
the class need not be instantated to access its static nmenbers
not instantiated when an instance of the class is created
Met hod
b a group of self-contained declarati ons and executabl e statenents
that performan activity.
b a group of declarations and execut abl e program st atenents that
performa particular activity

<nodi fi er> returnType net hodNane(fornal - paraneter-
list)<throws.. .., ..>;
0 uniquely identify a nethod in terns of its return type, nane

Cal |

and formal paraneter |ist.

may represent activities associated with a particul ar

classification or data type

signature ® nane, types, nunbers,

order of paraneters

If no data is returned to the caller, the keyword void is used

for the return-type.

formal paraneter list ® a conma-separated |ist of paraneters

i ng/ i nvoki ng

A class nethod is invoked by a direct call to the nethod
an instance nethod is invoked by an object of the same class

When cal ling a net hod,
actual - paraneter |ist

the list of

literals or variabl es,

encl osed in parenthesis after the nmethod nane

Both the and the fornal -paraneter |ist nust
0 contain the same nunber of argunents,

0 in the sane order

o of the sanme data type

The nanmes of the identifiers in the actual paraneter |ist and
the formal paraneter list can be the sane or different.

The conputer will return to the calling nethod by either
executing a return statenment or by reaching the physical end of

t he net hod

passi ng argunents

paraneters are passed by val ue

val ues of actual paraneters nust be assignable to fornal

paraneters of conpatible types.

Val ue Paraneters

Ref erence Paraneters

primtive data type

obj ect and array
(stored by reference)

eval uate the argunment and
create a |local copy of the
val ue, assigning it to the
correspondi ng paraneter in
the call ed nethod

the references to the object
or array is passed and not
the specific values of the
obj ect or array.

any change to the paraneters
woul d be localized to the
function and woul d not
change the values in the

mai n et hod

any changes made to the

val ues of the values of the
paraneters in the called
method will result in
changes being made to the
val ues of the correspondi ng
argurments in the calling
nmet hod.

public static void main(String[]

L
int a= 2
change(a); //la = 2, still
int[] b ={1, 1, 1};
change(b); //now, b[1l] =
}

ar gs)

The

public static void change(int a)

{
a =5 [//=5o0nly inside this nethod

public static void change(int[] a)

return Keyword

return expression;

expression may be omtted

dual purpose

o assigns a value to the nethod

o marks the position in the nmethod where the conputer mnust
return to the calling nethod

void :

0 nay use a return statenent w thout an expression to force
the conputer to return to the caller

o if return statenent is omtted,
the conputer will automatically return at the end of the
nmet hod

may contain several return statenments when there are places in

a class nmethod that logically allow for the term nation of the

execution of the nethod.

Constructors

sane nanme as the class

can not return a val ue

can only be called using the “new’ operator

A class containing a constructor and instance nethods, may be
thought of as a data type

A variabl e declared as a class type does not becone an obj ect
until a constructor within the class has been executed.

is normally used in conjunction with the keyword new which

al |l ocates nmenory space fromthe heap.

provi des the storage in nmenory and the initialization of the
instance variables allocated to the object.

For each separate invocation of the constructor, a new object
wi || becone instantiated.

default constructor ® no paraneter

if a class does not specify any constructors,

implicit default constructor is supplied:

C assNanme(){} //No paraneters. Enpty constructor body
Caution: if provide non-default constructor, no-arg constructor
wi Il not be autonamtically created.

Instantiation

= allocation of nmenory for storing the object's data and the
initialization of this menory space with appropriate val ues
= creating an instance of the class
= creating an object
Instantiation is nade possible by the use of a constructor

Cl assNanme obj ect Name = new O assConstructor();

Cl assNanme obj ect Nane = new

Cl assConstruct or (argunent Li st) ;

new : allocate a new nenory storage area for holding the val ue
of the object
o primtive data is stored by val ue
can be conceptually represented in the nenory of
t he conputer
0 object is stored by reference
sinply say “Qhject 0" does create any object. Have to say “new
Object()” to actually create an object.
when an identifier is initialized, the value of the object is
not stored at the menory | ocation depicted by the identifier,
but stored in a different |location pointed at or referenced by
the identifier
defaul t:
o Instance variables and static variables receive a
default value unless explicitly initialized
0 Local variables remain uninitialized unless explicitly
initialized.

Cl ass net hod

static : cannot be invoked by an object

i nvoked by using the name of the nethod

can directly access other static menbers in the class

cannot access instance nenbers of the class

(there is no object being operated on when a static nethod is
i nvoked)

can always use a reference of the class’s type to access its

menbers, regardl ess of whether these menbers are static or

not
A Java application consists of at |east one class nethod, the
nmai n et hod.

0 signature: public static void main (String[] args);

o0 is executed before any other nmethod b The conmputer wll
start the execution of the programat the first
statenment in the nain nethod, and terninate execution
after the last statement.

o There nmust be one main nmethod present in only one of the

cl asses.
o Wen any predefined nethod throws an exception, append a
throws clause to the first line of the main, listing the

nanme of the exception(s).

I nst ance net hod
a group of methods that appear to describe the characteristics and
operations you mght associate with an object

bel ong together in the context of the description of the class
to describe the state and behavi or of an object.
are used to performa variety of operations that pertain to the
obj ect .
may have nodifiers, a return type, a name and a fornal
paraneter |ist
I nvoki ng an instance nethod by object (not called directly, as
wi th cl ass net hods)

obj ect . met hodNane() ;

obj ect . met hodNane(ar gunent Li st) ;
can only be invoked on objects of the class

Thi

its body can access all nenbers defined in the class
are passed an inplicit parameter which is a reference to the
obj ect on which the nethod i s being i nvoked
This object can be referenced in the nmethod’s body by the
keyword “this”
s
this can only be used in non-static nethod
cannot be nodified
refers to the current object
obj ect being instantiated for constructor
obj ect invoked the call for instance nethod
For constructor, the this object is inplicitly returned
Don’t have to use except there is a local variable with the
sane nane as instance variable b use the nane for |oca
variable, and this.nane for instance variable
(use O assNane. nane for static variable)
can use inside constructor to call peer overl oading
constructor
o nust be first line in constructor

o oI

Met hod Over | oadi ng

usi ng the same nanme for nethods: constructors / instance

met hods / class nmethods (but not a mixture of all three)

changing just the return type or the exceptions thrown is not

enough to overload a nmethod ® conpile error

the nunber and type of paraneters in the fornmal paraneter |ist

is the only in which the conpiler can distinguish overl oaded

nmet hods

no operator overl oadi ng

o Exception : overloading of the + operator for string
concat enati on

I nheritance and d ass H erarchy

b the process by which one class receives the characteristics of
anot her cl ass
cl ass Subcl assNane extends Supercl assNane

superclass ® initial class, base class, parent class
subcl ass ® receiving class, derived class, child class
hi erarchy diagram: arrows always point from subclass to
supercl ass
an obj ect of any subclass in the hierarchy is also a | ega
super cl ass obj ect
0 An object of a subclass may be assigned to an object of its
supercl ass without a data type violation
0 An object of a subclass nay be passed as an argunent to a
met hod that requires a paraneter of it superclass type
private variables are inherited by subclass objects
o each such object has its own copy of the variable with
its own val ue
0 cannot be accessed directly by the object itself
o can only be accessed through any protected or publiced
or public access nmethod of the superclass
for class variable, can redefine so it get its own independent
val ue

subRef . super Met hod() is valid

the only superclass Reference that can be assigned to a
subcl ass-typed variable, even with an appropriate cast, are
those superclass ref that are actually subcl ass objects

several classes may inherit froma single class

class A

|c|ass ¢

a single class cannot inherit fromnore than one class

\
|c|ass\P|

|c|ass ﬂ

yi
|c|ass E|

Al Java classes are ultimately derived fromthe Object class
it is not strictly necessary to state that a subcl ass
extends the oject class

subcl ass is not inherited the constructor(s) from superclass

super
Construct or

if present in a constructor, nmust always be the first statenent
in a constructor body

super() refers to the default, no-argument constructor, of the
supercl ass

may refer to paranmeterized constructors of the superclass
When you construct an object of a subclass, the constructor for
the supercl ass al so get invoked

o if omtted in subclass constructor, Java wll
automatically insert super()
. I f the superclass does not contain a default (no
argunent) constructor, this will result in a

conpilation error

0o Caution: Conpile error if superclass doesn’'t have no-arg
constructor (doesn’t defined no-arg and define any other
constructor ® no autonatically-created default
constructor)

Constructor calls are automatically chai ned

0 A sequence of constructor nmethods are invoked from
subcl ass to superclass and eventually to the bject
cl ass

0 a superclass constructor is always invoked before the
subcl ass constructor

o the body of the (Object constructor is executed first,
foll owed by the execution of the bodies of the
constructors down through the class hierarchy, and
finally to the execution of the subclass constructor
body

vari abl e

may be used as a prefix to access inherited variables and
inherited methods of a superclass in a subclass

Omwlmng&mmda$ Met hod
the superclass is overridden, when a subcl ass defines a nethod
with the sane nane, return type and argunent list as a nethod
in a superclass
must be at | east as accessible as they are in superclass
met hod definition in the subclass can only specify all or
subset of the exception classes (including their subclasses)
specified in the throws clause of the overridden nethod in the
supercl ass
the inherited nethod can be accessed by the statenent
super . met hodNane() .
Dynami ¢ Met hod Lookup
b the process of determ ning which nethod definition a nethod
signature denotes during runtine, based on the class of the object
b a techni que where each object has a table of its nethods, and
Java searches for the correct versions of any overridden nethods at
run-time
Wien a nethod is invoked using a reference
the nethod definition which actually gets executed
is determined both by the class of the actual object denoted by
the reference at runtine and the nethod signature
AnQbj Ref . nethod() will cause conpile error if AnCbhjRef is a
reference of a class/interface that doesn’'t have nethod() even
when AnCbj Ref denotes the actual object that is one of the
cl ass that have nethod()
the conpiler doesn't know, the decision on which nethod to use
is poseponed until runtine
Dynamic nethod is not as fast as invoking a nethod directly.
Dynami ¢ net hod | ookup is not required for static or private
nmet hods and those nethods and cl asses decl ared as final
pol ynor phi sm
b Java'a ability to decide anbngst nethods based on the runtine
cl ass
P a way of giving a nethod one nane that is shared up and down an
obj ect hierarchy, with each object in the hierarchy inpl enmenting
the nethod in a way appropriate to itself
To wite pol ynorphic classes
0 The classes nust be part of the sane inheritance hierarchy
0 The cl asses nust support the sane set of required nethods
Shadowed Vari abl es
The variabl e of the subclass shadow the inherited variable, if
an inherited variable has the sanme nane as a variable of the
subcl ass
to use the inherited variable in the subclass, use the reserved
word super
If class Childd ass is a subclass of class Parentd ass, and
both contain a variabl e named common
In class Childd ass
o the variable common may be refered to by
o conmon
o this.comon
o the inherited variable common is refered to by
0 super.conmon

0 ((Parentd ass)this).conmmon
Qut si de both cl ass
may refer to shadowed variabl es by casting an object to the
appropriate type
Variable is determned by the reference type, not the actua
type of the object
| s-a and has-a Rel ationship
(A} In the is-a hierarchy, we can say that inheritance is
appropriate if every object of class Y may al so be viewed as
an object of class X
(A} The has-a rel ationship describes that every object of a
class X has-a set of attributes of type Y
Encapsul ati on
b an approach to program devel opnent that attenpts to hide much of
the inplenentation details of a class
the interface of each class is defined in such a way as to
reveal as little as possible about its inner workings
access to the data is allowed only via specific instance
nmet hods
the inplenentation of the data, constructors, instance nethods
and cl ass nmethods may be hidden fromthe user
b the grouping together of data and a set of methods to perform
actions on the dat
ADT: abstract data type
en encapsul ated group, consisting of a data and its associ ated
nmet hods
Abstract class
b a class that contains at |east one abstract nethod
not all the methods of an abstract class need be abstract.
at the top of the hierarchy
An obj ect cannot be instantiated
an obj ect may be decl ared as being of abstract type
acts as a blueprint for all subcl asses
can be extended to suit different classes within the taxonony
A subcl ass of an abstract class nay be instantiated, provided
that all abstract nethods of the abstract class are overridden
and inpl emrented in the subcl ass
If not all the abstract nethods are inplenented, the subclass
nmust al so remai n abstract
abstract nethod
difined by the nmethod's signature
has no net hod body
met hodNane()
I nterfaces
b a class that nust contain only abstract nethods and/or constant
references of interface type can be decl ared
these can denote objects of classes that inplenent this
interface
(upcasting)
possi ble for an interface not to contain any nethods or
constants
Interface are a data type, in the sane way that classes are a

data type. for future use by other objects.

When a class inplenents an interface, instances of that class . heap ® an area of nmenory set aside for the dynamc allocation

can be assigned to variables of the interface type. of conmputer menory to objects during run tine.

Mil tiple inheritance of interfaces is allowed in Java . garbage collection ® the java systemautomatically returns
menory to the heep when it is no |longer required

class D{Y}

interface E{¥%} Java access specifiers

class F extends D inplements E{¥%} . Each access specifier controls the access for only that

particul ar definition.
0o C++ ® the access specifier controls all the definitions
following it until another access specifier cones along.

To grant access to a nenber
Make the nenber public. Then everybody, everywhere, can access
it.
Make the nenber friendly by | eaving off any access specifier,
and put the other classes in the sanme package. Then the other
cl asses can access the nenber.
Inherited class can access a protected nenber as well as a
public menmber (but not private nmenbers). It can access friendly
menbers only if the two classes are in the same package.
Provi de “accessor/nutator” nethods (al so known as “get/set”
nmet hods) that read and change the val ue.

Commond Li ne Argunents

The argunents that are passed (paraneter list for the main
met hod)

o0 are stored as strings in the array args.

o args[0], arg[1l], and so on
The progranmm ng environnment that you are using ® will dictate
the manner in which you are allowed to pass argunents to the
mai n et hod.

asun or equival ent Sol aris-based conputer: Menber Accessibility private | package | protected | public
enter the paraneters after the name of the executabl e program From a subclass in the sane ves ves ves ves
fully integrated program devel opnent environnent, such as package
' ™
M crosoLt s Visual J++™ i ndow bef . h From a non-subclass in the no yes yes yes
enter the paraneters in a space w ndow before executing the same package
program From a subcl ass in another no no yes yes
open project settings and, in the stand-al one interpreter package
mode, input the %Lc())greargfarl %Lér:ta?tflsers From a non-subcl ass in no no no yes
. b . . L anot her package
the region of a programin which an identifier can be used AVaT
class scope brivate . S
- Mermber ® visible within its own class
accessible fromits point of declaration throughout the entire no one can access except that particul ar class, inside methods
bl oc(l:<| zii e of that class
Dl ocK scope .
only accessible fromthe point of declaration to the end of the outs-lde classt b di t1v by th bi ect itself
bl ock. cannot be accesses directly by the object itse

= can only be accessed through any protected or public
access net hod
all ows you to freely change that nenber w thout concern that it
wi Il affect another class in the sane package.

But can passed as an ar gument
is not always recogni zed by the use of braces { }
o any variable defined by the for loop is visible in the
statenment that follows the for definition.

identifiers of a formal paranmeter |ist may also be regarded as nmenbers are still inherited, but they are not accessible in the
havi ng bl ock scope subcl ass
Lifetine of Identifiers : private constructor . .
P the period during which the value of the identifier exists in 0o can't use new ClassNane() outside its own class ® may have

to provide a public nethod inside
Identifiers declared as being static exist for the life of the {Statl ¢ O assName makeAnChbj ect ()
pr ogr am

paranmeters and identifiers having bl ock scope only exist during }

the execution of the nethod

When an obj ect goes out of scope, the anount of nenory
all ocated to storing that object is returned back to the heap

conput er nenory.

return new O assNane();

If you don’t want anyone el se to have access to that
class, you can nmeke all the constructors private,
thereby preventing anyone but you, inside a static

menber of the class, fromcreating an object of that
cl ass
/loption(l): Allow creation via static nethod
cl ass Soup
{
private Soup() {}
public static Soup makeSoup()
{

return new Soup();
}
public void f(){}

}
//outside this class:
Soup s = Soup. makeSoup();
s.f();
//option(2): Create a static object and return a
ref erence upon request
cl ass Soup
{
private Soup() {}
private static Soup psl = new Soup();
public static Soup access()

{

}
public void f(){}

return psi,

//outside this class:
Soup s = Soup. access();
s.f();
/1 a “singleton” pattern b allows only a single
obj ect to ever be created and you can’t get at
it except through the public method access().
o |If the default constructor is the only one defined, and it’'s
private, it will prevent inheritance of this class
Any nethod that you're certain is only a “hel per” nethod for
that class can be nade private, to ensure that you don’t
accidentally use it el sewhere in the package and thus prohibit
yoursel f from changing or renoving the nethod. Mking a nethod
private guarantees that you retain this option.
Unl ess you nust expose the underlying inplenentation (which is
a much rarer situation than you m ght think), you shoul d nmake
all fields private.
class may not be private
default access / Friendly / package
no access specifier at all
has no keyword
nmenber
all the other classes in the current package have access to the
friendly nenber
to all the classes outside of this package the nenber appears
to be private
cl ass

can be used only wthin that package.

an obj ect can be created by any other class in the package, but
not outside the package
Since a conpilation unit—a file—ean belong only to a single
package,
all the classes within a single conpilation unit are
automatically friendly with each other.
Thus, friendly elements are also said to have package access.
all ows you to group related cl asses together in a package so
that they can easily interact with each other
all source files that are in the same directory and have no
explicit package nane, are treated by Java as inplicitly part
of the “default package” for that directory, and therefore
friendly to all the other files in that directory.
If you create a new package and you inherit froma class in
anot her package, the only menbers you have access to are the
public menbers of the original package. (O course, if you
performthe inheritance in the same package, you have the
nor mal package access to all the “friendly” nenbers.)
pr ot ect ed
variable ® can be accessed fromany nmethod of any class in the
sane package
still has “friendly” access w thin package
a subcl ass in another package can only access protected nenbers
in the superclass via references of its own type or a subtypes.
public
variabl e and nethod ® visible anywhere its class is visible
o always use public static void main(String args[])
class ® visible anywhere
o Conpile error:

o There can be only one public class per conpilation unit
(file).
0 each conpilation unit has a single public interface

represented by that public class
o can have as nmany supporting “friendly” classes as
you want

o The nanme of the public class nmust exactly match the nane
of the file containing the conpilation unit, including
capitalization.

o It is possible, though not typical, to have a
conpilation unit with no public class at all. In this
case, you can nane the file whatever you like.

Not e
Just because a reference to an object is private inside a class
doesn't nean that some other object can't have a public
reference to the sanme object.
you have only two choices for class access: “friendly” or
public.
an inherited class
0 can access a protected nenber as well as a public
menber (but not private nenbers).
o can access friendly nenbers only if the two cl asses
are in the same package
Top-1evel Nested O asses and Interfaces
al so consider to be at the top level like an ordinary class or

interface
defined as a static nenber of an enclosing top-level class or
interface

can be nested to any depth, but only within other static top-
| evel classes and interfaces

Interface are inplicitly static. Nested interface can
optionally be prefixed with the keyword static and have public
accessibility

cannot have the same name as an encl osing cl ass or package

Data Types
Hexadeci mal nunbers are prefixed by 0x
Primtive data types = char, int, long, float, double
Uni code b prefixed by \u

literal b the stated val ue
0 character : always delimted by single quotes

A = \u0041

postfix [#bit m n max
Char act er 16
Uni code
I nt eger 32 -2% +2%-1
[ong I nt eger [or L 64 - 2% +2%-1
float r eal f or F 32 +1. 4x10°% +3. 4x10%®

(1.40239846) | (3.40282347)

doubl e | real dor D 64 +4. 94x10 324 +1. 8x103%8

(4. 9406564584 | (1.7976931
1246544) 3486231570)

The use of a plus sign (+) is optional for positive literals.
Al decinmal integer literals nust begin with a digit in the
range 1.9 after the sign if one is present.

Integer literals nust not begin with 0 (zero)

Areal literal can be witten in one of two ways: -123.456 or —
1. 23456E+2
doubl e : doubl e-preci sion
def aul t
o real : double

\t ® for a tabulation
\n ® for a new line
Bool ean Data Type
o permtted to have only one of tw values ® true or
fal se
o initialized by Java to be fal se
A white space character is generally regarded as either a
o space '\u0020'
o horizontal tabulation '\u0009'
o new |line '\uOOOA
o vertical tabulation '\uOOOB
o formfeed character '\u000C
A wildcard is a character that can represent a nunber of
different character.
o The wildcard * may represent any of the class nanes.
the \uxxxx notation can be used anywhere in the source to

represent Uni code characters
Identifiers
may contain
o AZ a-z

o $

o _ (underscore character)

o 0-9
may start with any characters with the exception of a deci mal
digit

o may but avoid starting an identifier with _ or $
. Often such characters are used in other
vari abl es by the conputer
can normal ly be of any practicable |ength
must not be the same as Java keywords
Wien an identifier is constructed fromnore than one word, each
successive word shoul d begin with an upper-case letter
KEYWORD

Thoses words in a non-bold regul ar typeface are reserved by
java but currently unused.

abstract, boolean, break, byte, byvalue, case, cast,

catch, char, class, const, continue, default, do,

doubl e, else, extends, false, final, finally, float,

for, future, generic, goto, if, inplenments, inport,
inner, instanceof, int, interface, long, native, new,
null, operator, outer, package, private, protected,

public, rest, return, short, static, super, switch,
synchroni zed, this, throw, throws, transient, true, try,
var, void, volatile, while

DECLARATI ON AND | NI TI ALI ZATI ON
data decl arati ons nmust appear before the data instructions
Vari abl es
Vari abl e Decl arati on:
dat aType identifier;
dataType identifierl, identifier2, identifiers3;
o Java automatically initializes all data of a primtive
type at the point of declaration.
. interger ® 0
. real ® 0.0
= characters ® \u0000
Variable Initialization:

dataType identifier = literal;
Only primtive data and reference val ues can be stored in
vari abl es
Const ant s
must be initialized at the point of declaration
final dataType IDENTIFIER = literal;
IOonventi on: constant identifiers should be code in upper-case
etters

Unary operators b have one operand
Bi nary operators b have two operands
Ref er ance
Pol ymor phi sm al | ows a reference to denote different objects in

the inheritance hierarchy at different tines during execution

a supercl ass reference can denote objects of its subcl asses
an interface reference can denote objects of classes that

i mpl ement the interface

Oper at or Precedence
priority type oper at or synbol
| evel
1 unary negat e -

1 unary pl us +

1 cast a data ()

type

2 multiplicative multiply *

2 multiplicative di vi de /

2 multiplicative remai nder %

3 additive add +

3 additive substract -

13 assi gnnent equal =

defined in the String class, if need to conpare the val ue of

strings
I f%el se

i f (conditional Expression){statenent WienTrue;}
el se {statenent WenFal se}

if (conditional Expression){stat enment WenTr ue; }
if()
{

if()
Ya;

Expressions are eval uated by taking the operators with a
hi gher priority before those of a lower priority.
General ly, where operators are of the sanme priority, the
expression is evaluated fromleft to right.

Expressions in parenthesis will be eval uated before non
par ent hesi zed expressi ons.

Par ent hesi s, al though not an operator, can be considered
as having an order of precedence after unary operators.

el se
Ya,
}
el se
if()
Ya,
el se
Ya,
}
If () if ()
if () {
Ya; if ()
el se oy
Ya; }
el se

I ncrenent/ Decrenent Operators

counter = counter + 1 ® counter++
counter = counter -1 ® counter—

Systemout. println(counter++) will

not the new one
Condi ti onal Expressions

can equate to one of the two val ues,

fal se
short-circuit eval uation

print the old counter

either true or

o only the condition X need be eval uat ed.

0 when using logical AND, if condition X is false
0 when using logical OR if codition Xis true
0 Both logical & and ||use short-circuit eval uation.
o To avoid short-circuit evaluation, use the
correspondi ng | ogi cal operators & and |.
SELECTI ON
Rat i onal operat or
oper at or nmeani ng
> greater than
< I ess than
== equal to
>= greater than or equal to
<= I ess than or equal to
1= not equal to

Conpari son of real nunbers for equality should be avoid, since

r eal

nunbers are not always accurately stored by the conputer.

use the instance nethods conpareTo, equals and equal sl gnoreCase

if (reply.equal s("YES"))
{

A

My

el se
.
if (reply.equal s("NJO"))
{
}
el se
error = true;
}
if (error)
screen. println("DATA ERROR - reply not in correct format");
el se
El se |f

if ()

el semi:f ()
el semi:f ()
el sej:f ()

ooy

el se ()

S\MtcH

A

switch (expression)

{

case cl: statenent(s); break;
case c2: statenent(s); break;

defaul t: stat enment (s); //optional

for selection based upon an ordinal type

The expression nust evaluate to an ordinal val ue

Those val ues that are not represented by case |labels wll
result in the statement after the optional default being
execut ed.

If the optional default statenent was not present and the val ue
of expression does not satisfy any case, then the conputer
woul d branch to the end of the switch statement.

W thout default option, no action would occur when a val ue was
out of range.

necessary to include a way of exciting fromthe swtch
statement at the end of every case.

o Failure to exit fromthe switch will result in the
execution of all the case statenments follow ng the
chosen case.

0 One nethod of exiting froma switch statenment is through
the use of a break statenent at the end of every case
list. ® causes the switch to term nate, and execution
resumes with the next statement (if any) follow ng the
end of the switch statenent.

switch ()

case 1: case 3: case 5:
22; break;
case 2:
2; break;
}
An ordinal variable ® has a value that belongs to an ordered
set of items , eg
o integer
o character

Real nunbers and strings are not ordinal types.

REPETI TI ON

Wil e
whi | e (conditional - expression)

{statenent(s);}

Dova Wi | e
do statenent(s) while (conditional-expression);

For
for

al ways permts the statements within the | oop to be executed at
| east once by the conputer.

Loop

(expressionl; expression2; expressionl) statenent(s)
expressionl ® the declaration (if necessary) and initialization
of the loop control variable

o |If expressionl is omtted, ® the initialization (and
decl aration) of the loop control variable nust take
pl ace before entry in the | oop

expression2 ® a condition under which repetition will continue

o |If expression2 is omtted, ® then the | oop does not

termnate unless it contains a break statemrent.
expression3 ® statenent to increnent or decrenent the | oop
vari abl e.

o |If expression3 is omtted, ® then increasing or
decreasing the | oop variable nust take place within the
body of the | oop.

The expressions in a for | oop are optional
Even when the expressions are onmtted in for |oops, the
sem col on separators nust be present

o infinite loop
for(; ;)
{

screen.println("forever and ever%");
}
for (expressionl;
expr essi on2; expression3)
st at ement s(s);

expr essi onl;
whi | e (expression2)

st at ement s(s);
expr essi on3;

}

is normal ly used for counting.

is a specialization of a while |oop.
0o can always replace a while loop with a for |oop.
o cannot always replace a for loop with a while |oop

I nner d asses
There are no non-static inner, local or anonynous interface

Non-static Inner O asses

defined wi thout the keyword static, as menbers of an encl osing
cl ass
can be nested to any depth
on par with other non-static nmenbers defined in a class
an instance
o0 <can only exist with an instance of its enclosing class.
o nust be created in the context of an instance of the
encl osi ng cl ass.

Ex CQutside the enclosing class use encl osi nglbj ect Ref . new
I nner ()
Quter outerRef = new Quter();
Quter.lnner innerRef = outerRef.new inner();
or
Quter.lnner innerRef = new Quter().new Inner();
or
Quter.lnner.lnner innerOlnnerRef = new Quter().new
I nner().new i nner & | nner Ref () ;
/1 new Quter.lnner() ® conpile error
Ex In the enclosing class’s non-static nenber
The return type can be Inner or Quter.|nner
can say new | nner();
instance variable: Inner innerRef = new |nner();
Ex In the enclosing class's static nenber
static variabl e:
static Inner innerRef = new Quter().new |Inner();
local variable in static nmethod :
public static void nmethod(){!nner innerRef = new
Quter().new Inner();}

cannot have static nmenbers
(the class does not provide any services, only instances of the
cl ass do)
can have non-default constructors
i nstance nmethods can directly refer to any nmenber (including
class) of any enclosing class, including private nenbers. No
explicit reference is required.
Explicit reference to nenbers in the enclosing class :
Quter.this.name or Quter.this.name()
Shadowed Menbers
In InnerO I nner class’s non-static nethod P can have
Nane , this.Nanme , InnerCflnner.this. nane
® denote one of Inner | nner
Inner.this.nane ® denote one of |nner
Quter.this.nane ® denote one of CQuter
These menbers are not overridden in the inner classes, as no

i nheritance is involved.
Li ke any ot her class nenber, they have cl ass scope.

can have any accessibility

multiple objects of the inner classes can be associated with an
obj ect of an enclosing class at runtine

for each instance of the outer class, there can exist nmany
instances of a non-static inner class

conpil ed to Quter$lnner.class , Quter$lnner$lnnerCflnner.class
can use the inport statement to provide a shortcut for the
nanes of non-static inner classes

can extend other classes

can thensel ves be extended

case

class B{}

class A

Ex1

class C extends B{}

If a nane conflict arises,
the inherited nmenber shadows the nenber with the same name in
the encl osing cl ass
The conpiler requires explicit reference
can’'t say just the name in class C the conpiler wll
conpl ai n: “Anbi guous nane: inherited ‘B.nane’ and outer
scope ‘A nanme’ —an explicit ‘this’ qualifier is required’
this.nane will refer to the one of superclass
. A this.nane will refer to the one of exclosing class

class CQuter

{

public I nner makel nstance()

return new Inner(); //can use Inner() directly here
}

cl ass | nner

{
}

public class Cient

{

}
Ex2

public static void main(String args[])

{
Quter outRef = new Quter();
Quter.lnner inRef = outRef.makel nstance();
//an instance of a non-static inner class nust be created in
the context of an instance of the enclosing class
}

class CQuter

{

cl ass | nner

{
}

public class Cient

}
Ex3

public static void main(String args[])

{
Quter outRef = new Quter();
Quter.lnner inRef = outRef.new Inner();
Quter.lnner inRef2 = new Quter().new I nner();
}

class CQuter

{

static Inner i = new Quter().new |Inner();
Inner i2 = new I nner();
cl ass | nner

{
}

Local d asses

Anonynous d asses
defined at the location they are instantiated
do not have a nane
an instance of the class can only be created together with the
definition

Ex

inmport java.aw.*;

inmport java.aw.event.*;

inmport java.io.*;

inmport java.util.*;

cl ass FranmeMouse extends Frane

{
public static void main (String[] args)
{
FrameMouse fm = new FranmeMuse();
publ i c FraneMuse()
{
addW ndowLi st ener
(
new W ndowAdapt er ()
public void w ndowd osi ng(W ndowEvent
e){dispose(); Systemexit(0);}
}
)
set Backgr ound(Col or. pi nk) ;
set Si ze(500, 500) ;
setVisible(true);
}
}

Static Initializers
b a block of code preceded by the word keyword static.
. used to initialize a static variable in a class when sinple
initialization is not appropriate
is not like a class nethod,;
does not have a fornmal paraneter
does not have a nane
does not return a val ue
is not called fromanother part of the program
When a class is loaded, the static initializer is automatically
executed by the systembefore the main nmethod i s executed.
A class may have a series of static initializers, one follow ng
the next in a sequence.
o The systemwill execute all the static initializers in
sequence before executing the main nethod.
Ex
public class O assl

static {String s = "assfd";}
public static void main(String args[]){}

Array
b a data structure which defines an ordered collection of a fixed
nunber of honbgeneous data el enents
are objects
all elenments in the array have the sane data type
size is fixed
is indexed fromO (zero)
arrayNane. | ength ® return the length of an array
The decl aration of the size of an array, may be perforned at
run-time, the size of the array is then fixed for for the
duration of the executing program
If the index goes out of bounds (not within the limts of the
array) then an Arrayl ndexQut O BoundsException is thrown.
instance variable: length
implicitly augnment the inheritance hierarchy
all array types inplicitly extend the (oject class
Arrays of class types also extend the array type Object[]
. runti me: Arrayl ndexQut O BoundsExcepti on
One- di mensi onal arrays
Decl ari ng:
Type[] arrayNane
Type arrayNang[]

o] Not e
o int a[], b; ® only “a” is an array
o int[] a,b ® both “a” and “b” are arrays
o only declared, not constructed or initialized
0 instance/static array ® initialized to the default

reference val ue nul |
o no default initialization for |ocal reference variables or
| ocal arrays
Constructi ng:
arrayName = new Type[noOf El enent] ;
o mn elements =0
0 a common natural occurance of an array of length zero b
array given as an argunent to the main() nethod when a Java
programis run wthout any program argunents
o all elements are initialized to the default val ue
0 anonynous arrays
new Type[]{}
int[] nane; ® null
int[] nunbers = newint[5]; ® storage space is allocated to an
array using the keyword new
int[] numbers = {1, 2, 3, 4};
nunbers[0] ® 1
Obj ect[] array = {new String(), new String(), null};
int size = 5;
int[] nunbers = new int[size];

//® need to have the " = new int[size]" part
for (int index=0; index != size; index++)
{
nunmber s[i ndex] = new
I nt eger (keyboar d. readLi ne()).intVal ue();
}
int[] nunmbers = {1, 2, 3, 4};
for (int index=0; index != nunber.|ength; index++)
{

screen.println("cell " + index + "\t" + nunbers[index]);

Mil ti di nensi onal arrays
arrays in a multidinmentional array need not have the sane
| engt ht he di mensi ons nmust be created fromleft to right
o conpile error: newint [][4]

int[][] a° int[] a[]

int[1[1 A={{1}, {1, 2}, {1, 2, 3}};
o Alength ® 3
o Al].length ® 2

i{nt[][][] A=

{ {0.1}, {12}, {23} },
{ {12}, {2,3}, {3,4} },
{ {2.3}, {3.4}, {45} },
{ {3.4, {45}, {56} }

The declaration of an array may omt the | ower-order
di mensi ons, provi ded those dimensions that are declared are
continuously descri bed

o newint[20][15][][]

o // newint[20][][3] not X

for(int i=0; i != A length; i++)
for(int j=0; j!= Ali].length; j++)
{ for(int z=0; z !'= Ali][j].length; z++)
i screen.print(Ali][j][z] + "\t");

}

java.lang. String

b group of characters, that are stored as consecutive characters
in the menory of a conputer, with each character being represented

by a 16-bit Uni code
String()
String(char[])
public String(char value[], int offset, int count)
o length = nunber of 16-bit Unicode characters
o offset argunent : index of the first character of the
subarray
o count : the length of the subarray
String(String)
String(StringBuffer)

not a primtive data type

A string literal in Java is delimted by doubl e quotes.

“ABC’ or “\u0041\u0042\ u0043”

default = null

shortcut method for initializing a string

String objectNanme (= “argument-list”;)

If you wish to assign one string to another, then the

assi gnment does not provide a copy of the value but nerely a

reference to the val ue

+ ® a string concatenation operator

String objects are immtable ® the contents of the string

cannot be changed

public int length()

o length = nunber of 16-bit Unicode characters

public char charAt(int index)

public void getChars(int srcBegin, int srcEnd, char dst[], int

dst Begi n)

o The first character to be copied is at index srcBegin; the
| ast character to be copied is at index srcEnd-1 (thus the
total nunber of characters to be copied is srcEnd-srcBegin).

0 The characters are copied into the subarray of dst starting
at index dstBegin and ending at index: dstbegin + (srcEnd-
srcBegin) - 1.

publ i c bool ean equal s((hj ect an(bj ect)

publ i ¢ bool ean equal sl gnoreCase(String anot her String)

public int conpareTo(String anotherString)

o]

Ret ur ns:
= the value O if the argunent string is equal to this
string;

= avalue less than O if this string is |exicographically
| ess than the string argunent

= avalue greater than O if this stringis
| exi cographically greater than the string argunent.

public String substring(int beginlndex)

public String substring(int beginlndex, int endlndex)
public String concat(String str)

public static String copyVal ueOd (char data[])

public static String copyVal ueO (char data[], int offset, int
count)

public char[] toCharArray()

public String toLower Case()

public String toUpperCase()

5;“)' ic static String val ueO (bool ean/ char/char[]/doubl e/ f1 oat
public static String valueO (char data[], int offset, int
count)

A call to the instance nethods tolLowerCase() and toUpper Case()

on a string object will return a new string object, and wll
not nodify the original string
o |If you intend to pass a string object as an argunent,

with the intention of changing the values of the string
object ® use the class StringBuffer to instantiate an

obj ect that represents a string of characters
The characters in a StringBuffer object can be
changed all owi ng the object to grow or shrink in
I ength as necessary.
Ex StringBuffer data = new StringBuffer("abcde")

Excepti on Handl i ng

Exception need not be caught in the sane context that it was
thrown in
The runtime behavi or of the program determ nes which exceptions
are thrown and how they are caught

Exception Inheritance Hierarchy

java.lang | Throwable |
I
[1
Error | | Exception |
I
[
r— —— javai -
InterruptedException | | RuntimeException | I0Exception |
FileNotFoundException |
—I ArithmeticException |
AWTEXxception |
—I NullPointerException |

—I ArraylndexOutOfBoundsException |

—I ClassCastException |

—I lllegalArgumentException |

—I NumberFormatException |

java.l ang. Error

o LankageError, ThreadDeath, Virtual Machi neError

o invariably never explicitly caught

o usually irrecoverable

java.l ang. Runt i neExcepti on

o usually due to program bugs that should not occur in the
first place

0O nore appropriate to treat themas faults in the program
design, rather than nerely catching them during program
execution

unchecked exceptions b RuntinmeException, Error and their

subcl asses

o anethod is not obliged to deal with them

checked exceptions b all exceptions except unchecked exceptions
Conpi | er ensures that
if a method can throw a checked exception, directly or
indirectly,
then the nethod nust explicitly deal with it

0 catch and take appropriate action
0 pass ontoits caller

If not explicitly caught and handl ed by the program

percol ates upwards in the nethod activation stack, and

is dealt with by the default exception handler b usually print

s the name of the exception, with an expl anatory nessage

folloed by the stack trace

new exceptions are created by extendi ng the Exception class or

its subclasses ® checked
try, catch, finally

try{}
cat ch(Exceptionl el){}

cat ch(Exceptionn en){}

finally{}
the catch block and finally block nust always appear in
conjunction with a try block, and in the above order
try
. for each try bl ock

there can be 3 0 catch bl ocks

but only one finally block

must be followed by either at |east one catch bl ock or one

finally block

term nati on occurs when
encounter an exception ® control is transferred to the
catch bl ock, if any.

if no catch bl ock matches the thrown exception
control is transferred to the finally bl ock

successful execution of the code inside ® catch bl ocks
are skipped and the control is transferred to the
finally block, if one is specified

catch
take exactly one argunent

exception nmust be of the Throwabl e class or one of its
subcl asses

handl e exception that is assignable to the reference type

of the paraneter

first matching catch is executed ® all other catch bl ocks

are skipped ® control is transferred to finally bl ock

(regardl ess of whether the catch block itself throws an

exception)

conpile error: catch block for a superclass exception

shadows the catch bl ock for a subcl ass exception

as the catch bl ock of the subclass exception will never be

execut ed

when exit catch bl ock

. if there is any pending thrown exception that not
handl ed ® nethod is aborted ® finally bl ock executed
if any ® exception propagated
if exception has been dealt with ® finally block
executed ® normal execution resunes

finally

if any code in the try block is executed, then the finally

bl ock i s al ways executed

on exit, if there is any pending exception, the method is

aborted and the excepti on propagated

An exception which is thrown in a finally block overrul es any
previ ously unhandl ed exception, and is propagated in the usua
way.

t hrow

throw Excepti onTypeQbj ect Ref
throw new ExceptionType()
when an exception is thrown,
o nornal execution is suspended
0 runtinme systemproceeds to find a catch bl ock that can
handl e the exception
0 the search starts in the context of the current try bl ock
propagating to any enclosing try bl ocks
and through the nmethod invocation stack
to find a handler for the exception
0 Any associated finally block of a try bl ock encountered
al ong the search path is executed
o |If no handler is found
then the exception is dealt with by the default exception
handl er at the top | eve
o If a handler is found, execution resumes with the code in
its catch bl ock
t hr ows
in method header
explicitly propagate the exception to its caller
a nmethod can only throw those checked exceptions that are
specified in its throws clause
Overriding nmethod: nmethod definition in the subclass can only
specify all or subset of the exception classes (including their
subcl asses) specified in the throws clause of the overridden
met hod in the superclass

