
CS 211 Prapun Suksompong
8/11/00 7:14 PM CS211 note 03.doc

Java

• The term Java is not an acronym
but adopted to reflect a favorite drink (coffee?) of many
programmers – hence Sun's logo for Java is a cup of steaming
coffee.

• http://java.sun.com
• JDK = Java Development Kit
• Java is a case-sensitive language
• Java code can be written as either an application or an applet
• API = Application Programming Interface
• The java.lang package is automatically imported.
• abstraction denotes the essential properties and behaviors of

an object that differentiate it from other objects
• Object-oriented Program Design → modeling abstractions using

classes and objects
• UML : Unified Modeling Language notation
• Objects are manipulated through object references (reference

values / references)
• infix dot ‘.’ operator
• everything must be encapsulated in classes
• 2 kind of values

• atomic values of primitive types
• reference values

Program Implementation
• program keyed in from document Editor→ program stored on a

disk in text mode source code (.java)
• program stored on disk in text modeCompiler→program stored on

disk as a series of bytecodes (.class)
• Java byte codes ⇒ a set of instructions written for a

hypothetical computer, known as Java virtual machine
• Regardless of the computer you are using, the compiler will

generate the same Java byte code program ⇒ programs
written in Java are portable.

• on JDK: javac ClassName.java
• one .class file for each class/interface

• program as series of bytecode is stored in memory
Interpreter(←data)→ results
• on JDK: java name → invoking the main() method from the

specified class
• java : Java interpreter

• block → many statements contained between braces { }
o If only one statement is executed in a selection

statement, the use of braces can improve the clarity of
the code, even though the braces are themselves
redundant.

Template for constructing a Java application program
// heading giving details of the name and purpose of the program
import java.io.*;

 // java.io.BufferedReader, java.io.PrintWriter
class ClassName
{
 // declarations of input and out streams
 static BufferedReader keyboard = new
 BufferedReader(new InputStreamReader(System.in));
 static PrintWriter screen = new PrintWriter(System.out, true);

// main method
 public static void main (String[] args) throws IOException

// readLine() in the class BufferedReader throws an
IOException
// args can be any name e.g. arg, etc.

 {
 // declaration of constants

 // declaration of variables

 // program statements

 screen.print(“Input something ”); screen.flush();
 input = new Float(keyboard.Leadline()).floatValue();
 screen.println(“output = ” + input);
 }
}
• the order of the static and public keywords is irrelevant
Object
• has a unique identify
• has its own copy of the variables declared in the class

definition
• do not have names but are denoted by references
• can only be manipulated via references, which can be stored in

variables
• can have several references → aliases
• deletion is taken care of by the runtime system
• state: the values of variables inside
• communicate by message passing
• cannot contain other objects; can only have references to other

objects
Statements terminated by a semicolon
• ; → empty statement
• {} → compound statement

Assignment Statement
identifier = literal;
identifier = identifier;
identifier = expression;
• destination is always on the left-hand side
• The assignment of one object to another of the same type does

not create a copy of the object

note
• 9=a à has no meaning, since 9 is not a legal identifier

• a=a+1 à increase the value of the variable a by 1
Legal assignment? (compile-wise)
• At compile time, refA = refB will be checked by the type of the

refs not the actual type of the object that they refer to.
• On the hierarchy diagram, if can follow the arrow from

class/interface B up to class/interface A, then it’s valid
• refOfSuper = refOfSub is valid
• // refOfSub = refOfSuper is not valid : compile error

(even when the refOfSuper really refers to the sub object)
• refOfSub = (Sub) refOfSuper is valid

• may cause ClassCastException at run-time if
§ refOfSuper actually refers to a super object
§ refOfSuper refers to object of another subclass

of that super class
The rules for reference assignment (enforced at compile time)
SourceType srcRef;
DestinationType destRef = srcRef;
• If SourceType is a class type, valid if

o DestinationType is a superclass of the subclass
SourceType

o DestinationType is an interface type which is
implemented by the class SourceType

• If SourceType is an interface type, valid if
o DestinationType is Object
o DestinationType is a superinterface of subinterface

SourceType
• If SourceType is an array type, valid if

o DestinationType is Object
o DestinationType is an array type, where the element type

of SourceType can be converted to the element type of
DestinationType

Type conversion
• for primitive datatypes

widening conversions are permitted
narrowing conversions require an explicit cast

• for reference values
o upcasting: conversions up the inheritance hierarchy are

permitted
o downcasting: conversions down the hierarchy require

explicit casting
• performed automatically when

the type of the expression on the right-hand side of an
assignment can be safely promoted to the type of the variable
on the left-hand side.

Ex not allow : int=long
cast

 (DestinationType) ref;
Ex allow: int = (int)long

• digits may be lost in the assignment
• cast conversions are unsafe, as they may throw a

ClassCastException at runtime
Legal cast? (compile-wise)

• (super) subRef is valid
• (sub) superRef is valid

o but if the superRef actually refers to a super
object, will cause runtime error: throws
ClassCastException

Ex
public class Class1
{
 public static void main (String[] args)
 {
 A a; B b; C c; D d;
 a = new A();
 b = new B();
 // b = (B) a; //not OK, will throw a
java.lang.ClassCastException when run
 a = b; //a ref to subclass B object
 // b = a; // not OK, compile error, can’t implicitly convert
A to B
 //c = (C) a; //not OK, compile error, can't convert A to C
 b = (B) a;
 a = new A();
 // b = (B) a; //not OK, will throw a
java.lang.ClassCastException when run
 d = new D();
 a = d;
 // b = (B) a; //not OK, will throw a
java.lang.ClassCastException when run
 }
}
class C{}
class A{}
class B extends A{}
class D extends A{}
instanceof
ref instanceof DestinationType
• true : if ref can be cast to the DestinationType (class,

interface, array type)
≡ the corresponding cast expression is valid

• false : the cast involving the operands will throw a
ClassCastException

o literal “null” is not an instance of any reference type
o any array of non-primitive type is an instance of both

Object and Object[] types
o an instance of a superclass is not an instance of its

subclass
o an instance of a class cannot be of an interface type

which is not implemented by the class of the object
o an instance of a class is not an instance of a totally

unrelated class
§ This can pass the compile check by reference one

of then via an Object reference
• what matters is the class of the actual object denoted by the

reference at runtime, not the type of the reference
•
compile time check:

refDestinationType = (DestinationType)refSourceType
refSourceType instanceof DestinationType
whether a refSourceType and a reference of DestinationType can
denote objects of a class (or its subclasses) where this class
is a common subtype of both SourceType and DestinationType.
If this is not the case, then obviously there is no
relationship between the types, and neither the cast nor the
instanceof operator application would be valid
Therefore, if no common subtype

⇒ compiler will reject casting refSourceType to type
DestinationType or applying the instanceof operator

Class
• The name of the class containing the main method must be the

same as the the name given to the program file (omitting the
.java suffix).

• convention: the name of a class should always begin with an
upper-case letter.

(modifier) class ClassName <extends …> <implements …,…,…>{}
• may contain

o data → properties/attributes → variables/fields
• constants
• class data: static

• when class is loaded, static variables
are initialized to their default values
if no other explicit initialization is
provided

• initialized when the class is loaded at
runtime

• instance variables ⇒ represent the data for a
particular object

• Each object will have its own set of
instance variables, which represent the
state of an object

o methods → behaviors → operation
• constructors
• class methods: static
• instance methods

or both
• access static members

o ClassName.memberName
o ClassObjectRef.memberName

• access instance members → ClassObjectRef.memberName only
static member
• can access these by using the class name, or through object

references of the class
• the class need not be instantated to access its static members
• not instantiated when an instance of the class is created

Method
⇒ a group of self-contained declarations and executable statements
that perform an activity.
⇒ a group of declarations and executable program statements that
perform a particular activity

<modifier> returnType methodName(formal-parameter-
list)<throws…,…,…>;

o uniquely identify a method in terms of its return type, name
and formal parameter list.

• may represent activities associated with a particular

classification or data type
• signature → name, types, numbers, order of parameters
• If no data is returned to the caller, the keyword void is used

for the return-type.
• formal parameter list → a comma-separated list of parameters
Calling/invoking
• A class method is invoked by a direct call to the method
• an instance method is invoked by an object of the same class
• When calling a method,

actual-parameter list : the list of literals or variables,
enclosed in parenthesis after the method name

• Both the and the formal-parameter list must
o contain the same number of arguments,
o in the same order
o of the same data type

• The names of the identifiers in the actual parameter list and
the formal parameter list can be the same or different.

• The computer will return to the calling method by either
executing a return statement or by reaching the physical end of
the method

passing arguments
• parameters are passed by value
• values of actual parameters must be assignable to formal

parameters of compatible types.
Value Parameters Reference Parameters
• primitive data type • object and array

(stored by reference)
• evaluate the argument and

create a local copy of the
value, assigning it to the
corresponding parameter in
the called method

• the references to the object
or array is passed and not
the specific values of the
object or array.

• any change to the parameters
would be localized to the
function and would not
change the values in the
main method

• any changes made to the
values of the values of the
parameters in the called
method will result in
changes being made to the
values of the corresponding
arguments in the calling
method.

• public static void main(String[] args)
{

 int a = 2;
 change(a); //a = 2, still
 int[] b = {1, 1, 1};
 change(b); //now, b[1] = 5
 }

 public static void change(int a)
 {
 a = 5; //= 5 only inside this method
 }
 public static void change(int[] a)
 {
 a[1] = 5;
 }
The return Keyword
• return expression;
• expression may be omitted
• dual purpose

o assigns a value to the method
o marks the position in the method where the computer must

return to the calling method
• void :

o may use a return statement without an expression to force
the computer to return to the caller

o if return statement is omitted,
the computer will automatically return at the end of the
method

• may contain several return statements when there are places in
a class method that logically allow for the termination of the
execution of the method.

Constructors
• same name as the class
• can not return a value
• can only be called using the “new” operator
• A class containing a constructor and instance methods, may be

thought of as a data type
• A variable declared as a class type does not become an object

until a constructor within the class has been executed.
• is normally used in conjunction with the keyword new which

allocates memory space from the heap.
• provides the storage in memory and the initialization of the

instance variables allocated to the object.
• For each separate invocation of the constructor, a new object

will become instantiated.
• default constructor → no parameter
• if a class does not specify any constructors,

implicit default constructor is supplied:
ClassName(){} //No parameters. Empty constructor body

• Caution: if provide non-default constructor, no-arg constructor
will not be automatically created.

Instantiation
= allocation of memory for storing the object's data and the
initialization of this memory space with appropriate values
= creating an instance of the class
= creating an object

• Instantiation is made possible by the use of a constructor
ClassName objectName = new ClassConstructor();
ClassName objectName = new

ClassConstructor(argumentList);

• new : allocate a new memory storage area for holding the value
of the object

o primitive data is stored by value
• can be conceptually represented in the memory of

the computer
o object is stored by reference

• simply say “Object o” does create any object. Have to say “new
Object()” to actually create an object.

• when an identifier is initialized, the value of the object is
not stored at the memory location depicted by the identifier,
but stored in a different location pointed at or referenced by
the identifier

• default:
o Instance variables and static variables receive a

default value unless explicitly initialized
o Local variables remain uninitialized unless explicitly

initialized.
Class method
• static : cannot be invoked by an object
• invoked by using the name of the method
• can directly access other static members in the class
• cannot access instance members of the class

(there is no object being operated on when a static method is
invoked)
• can always use a reference of the class’s type to access its

members, regardless of whether these members are static or
not

• A Java application consists of at least one class method, the
main method.

o signature: public static void main (String[] args);
o is executed before any other method ⇒ The computer will

start the execution of the program at the first
statement in the main method, and terminate execution
after the last statement.

o There must be one main method present in only one of the
classes.

o When any predefined method throws an exception, append a
throws clause to the first line of the main, listing the
name of the exception(s).

Instance method
a group of methods that appear to describe the characteristics and
operations you might associate with an object
• belong together in the context of the description of the class

to describe the state and behavior of an object.
• are used to perform a variety of operations that pertain to the

object.
• may have modifiers, a return type, a name and a formal

parameter list
• Invoking an instance method by object (not called directly, as

with class methods)
object.methodName();
object.methodName(argumentList);

• can only be invoked on objects of the class

• its body can access all members defined in the class
• are passed an implicit parameter which is a reference to the

object on which the method is being invoked
This object can be referenced in the method’s body by the
keyword “this”

This
• this can only be used in non-static method
• cannot be modified
• refers to the current object

= object being instantiated for constructor
= object invoked the call for instance method
o For constructor, the this object is implicitly returned
o Don’t have to use except there is a local variable with the

same name as instance variable ⇒ use the name for local
variable, and this.name for instance variable
(use ClassName.name for static variable)

• can use inside constructor to call peer overloading
constructor.

o must be first line in constructor
Method Overloading
• using the same name for methods: constructors / instance

methods / class methods (but not a mixture of all three)
• changing just the return type or the exceptions thrown is not

enough to overload a method → compile error
• the number and type of parameters in the formal parameter list

is the only in which the compiler can distinguish overloaded
methods

• no operator overloading
o Exception : overloading of the + operator for string

concatenation

Inheritance and Class Hierarchy
⇒ the process by which one class receives the characteristics of
another class
class SubclassName extends SuperclassName
• superclass → initial class, base class, parent class
• subclass → receiving class, derived class, child class
• hierarchy diagram : arrows always point from subclass to

superclass.
• an object of any subclass in the hierarchy is also a legal

superclass object
o An object of a subclass may be assigned to an object of its

superclass without a data type violation
o An object of a subclass may be passed as an argument to a

method that requires a parameter of it superclass type
• private variables are inherited by subclass objects

o each such object has its own copy of the variable with
its own value

o cannot be accessed directly by the object itself
o can only be accessed through any protected or publiced

or public access method of the superclass
• for class variable, can redefine so it get its own independent

value

• subRef.superMethod() is valid
• the only superclass Reference that can be assigned to a

subclass-typed variable, even with an appropriate cast, are
those superclass ref that are actually subclass objects

• several classes may inherit from a single class

class A

class B class C

• a single class cannot inherit from more than one class

class F

class D class E

• All Java classes are ultimately derived from the Object class

• it is not strictly necessary to state that a subclass
extends the Object class

• subclass is not inherited the constructor(s) from superclass
super
Constructor
• if present in a constructor, must always be the first statement

in a constructor body
• super() refers to the default, no-argument constructor, of the

superclass
• may refer to parameterized constructors of the superclass
• When you construct an object of a subclass, the constructor for

the superclass also get invoked.
o if omitted in subclass constructor, Java will

automatically insert super()
§ If the superclass does not contain a default (no

argument) constructor, this will result in a
compilation error.

o Caution: Compile error if superclass doesn’t have no-arg
constructor (doesn’t defined no-arg and define any other
constructor → no automatically-created default
constructor)

• Constructor calls are automatically chained.
o A sequence of constructor methods are invoked from

subclass to superclass and eventually to the Object
class

o a superclass constructor is always invoked before the
subclass constructor

o the body of the Object constructor is executed first,
followed by the execution of the bodies of the
constructors down through the class hierarchy, and
finally to the execution of the subclass constructor
body

variable
• may be used as a prefix to access inherited variables and

inherited methods of a superclass in a subclass

Overriding Superclass Method
• the superclass is overridden, when a subclass defines a method

with the same name, return type and argument list as a method
in a superclass

• must be at least as accessible as they are in superclass
• method definition in the subclass can only specify all or

subset of the exception classes (including their subclasses)
specified in the throws clause of the overridden method in the
superclass

• the inherited method can be accessed by the statement
super.methodName().

Dynamic Method Lookup
⇒ the process of determining which method definition a method
signature denotes during runtime, based on the class of the object
⇒ a technique where each object has a table of its methods, and
Java searches for the correct versions of any overridden methods at
run-time
• When a method is invoked using a reference,

the method definition which actually gets executed
is determined both by the class of the actual object denoted by
the reference at runtime and the method signature

• AnObjRef.method() will cause compile error if AnObjRef is a
reference of a class/interface that doesn’t have method() even
when AnObjRef denotes the actual object that is one of the
class that have method().

• the compiler doesn't know; the decision on which method to use
is poseponed until runtime

• Dynamic method is not as fast as invoking a method directly.
• Dynamic method lookup is not required for static or private

methods and those methods and classes declared as final.
polymorphism
⇒ Java'a ability to decide amongst methods based on the runtime
class
⇒ a way of giving a method one name that is shared up and down an
object hierarchy, with each object in the hierarchy implementing
the method in a way appropriate to itself
• To write polymorphic classes

o The classes must be part of the same inheritance hierarchy
o The classes must support the same set of required methods

Shadowed Variables
• The variable of the subclass shadow the inherited variable, if

an inherited variable has the same name as a variable of the
subclass

• to use the inherited variable in the subclass, use the reserved
word super

• If class ChildClass is a subclass of class ParentClass, and
both contain a variable named common
In class ChildClass,

o the variable common may be refered to by
o common
o this.common

o the inherited variable common is refered to by
o super.common

o ((ParentClass)this).common
Outside both class
• may refer to shadowed variables by casting an object to the

appropriate type
• Variable is determined by the reference type, not the actual

type of the object
Is-a and has-a Relationship
& In the is-a hierarchy, we can say that inheritance is

appropriate if every object of class Y may also be viewed as
an object of class X

& The has-a relationship describes that every object of a
class X has-a set of attributes of type Y.

Encapsulation
⇒ an approach to program development that attempts to hide much of
the implementation details of a class.
• the interface of each class is defined in such a way as to

reveal as little as possible about its inner workings
• access to the data is allowed only via specific instance

methods
• the implementation of the data, constructors, instance methods,

and class methods may be hidden from the user
⇒ the grouping together of data and a set of methods to perform
actions on the dat
ADT: abstract data type
• en encapsulated group, consisting of a data and its associated

methods
Abstract class
⇒ a class that contains at least one abstract method
• not all the methods of an abstract class need be abstract.
• at the top of the hierarchy
• An object cannot be instantiated
• an object may be declared as being of abstract type
• acts as a blueprint for all subclasses
• can be extended to suit different classes within the taxonomy
• A subclass of an abstract class may be instantiated, provided

that all abstract methods of the abstract class are overridden
and implemented in the subclass.

• If not all the abstract methods are implemented, the subclass
must also remain abstract

abstract method
• difined by the method's signature
• has no method body
• methodName();
Interfaces
⇒ a class that must contain only abstract methods and/or constant
• references of interface type can be declared

these can denote objects of classes that implement this
interface
(upcasting)

• possible for an interface not to contain any methods or
constants

• Interface are a data type, in the same way that classes are a
data type.

data type.
• When a class implements an interface, instances of that class

can be assigned to variables of the interface type.
• Multiple inheritance of interfaces is allowed in Java

• class D{…}

interface E{…}
class F extends D implements E{…}

class F

class D interface E

Commond Line Arguments
• The arguments that are passed (parameter list for the main

method)
o are stored as strings in the array args.
o args[0], arg[1], and so on

• The programming environment that you are using → will dictate
the manner in which you are allowed to pass arguments to the
main method.

• asun or equivalent Solaris-based computer:
enter the parameters after the name of the executable program

• fully integrated program development environment, such as
Microsoft's Visual J++TM:
enter the parameters in a space window before executing the
program

open project settings and, in the stand-alone interpreter
mode, input the program arguments.

Scope of Identifiers
• the region of a program in which an identifier can be used
class scope
• accessible from its point of declaration throughout the entire

class.
block scope
• only accessible from the point of declaration to the end of the

block.
• But can passed as an argument
• is not always recognized by the use of braces { }

o any variable defined by the for loop is visible in the
statement that follows the for definition.

• identifiers of a formal parameter list may also be regarded as
having block scope

Lifetime of Identifiers
⇒ the period during which the value of the identifier exists in
computer memory.
• Identifiers declared as being static exist for the life of the

program
• parameters and identifiers having block scope only exist during

the execution of the method
• When an object goes out of scope, the amount of memory

allocated to storing that object is returned back to the heap
for future use by other objects.

for future use by other objects.
• heap → an area of memory set aside for the dynamic allocation

of computer memory to objects during run time.
• garbage collection → the java system automatically returns

memory to the heep when it is no longer required

Java access specifiers
• Each access specifier controls the access for only that

particular definition.
o C++ → the access specifier controls all the definitions

following it until another access specifier comes along.
To grant access to a member
• Make the member public. Then everybody, everywhere, can access

it.
• Make the member friendly by leaving off any access specifier,

and put the other classes in the same package. Then the other
classes can access the member.

• Inherited class can access a protected member as well as a
public member (but not private members). It can access friendly
members only if the two classes are in the same package.

• Provide “accessor/mutator” methods (also known as “get/set”
methods) that read and change the value.

Member Accessibility private package protected public
From a subclass in the same
package

yes yes yes yes

From a non-subclass in the
same package

no yes yes yes

From a subclass in another
package

no no yes yes

From a non-subclass in
another package

no no no yes

private
Member → visible within its own class
• no one can access except that particular class, inside methods

of that class
• outside class

§ cannot be accesses directly by the object itself
§ can only be accessed through any protected or public

access method
• allows you to freely change that member without concern that it

will affect another class in the same package.
• members are still inherited, but they are not accessible in the

subclass
• private constructor

o can’t use new ClassName() outside its own class → may have
to provide a public method inside
static ClassName makeAnObject()
{

return new ClassName();
}

• If you don’t want anyone else to have access to that
class, you can make all the constructors private,
thereby preventing anyone but you, inside a static
member of the class, from creating an object of that

member of the class, from creating an object of that
class
• //option(1): Allow creation via static method

class Soup
{

private Soup() {}
public static Soup makeSoup()
{

return new Soup();
}
public void f(){}

}
//outside this class:
Soup s = Soup.makeSoup();
s.f();

• //option(2): Create a static object and return a
reference upon request
class Soup
{

private Soup() {}
private static Soup ps1 = new Soup();
public static Soup access()
{

return ps1;
}
public void f(){}

}
//outside this class:
Soup s = Soup.access();
s.f();
// a “singleton” pattern ⇒ allows only a single
object to ever be created and you can’t get at
it except through the public method access().

o If the default constructor is the only one defined, and it’s
private, it will prevent inheritance of this class

• Any method that you’re certain is only a “helper” method for
that class can be made private, to ensure that you don’t
accidentally use it elsewhere in the package and thus prohibit
yourself from changing or removing the method. Making a method
private guarantees that you retain this option.

• Unless you must expose the underlying implementation (which is
a much rarer situation than you might think), you should make
all fields private.

class may not be private
default access / Friendly / package
• no access specifier at all
• has no keyword
member
• all the other classes in the current package have access to the

friendly member
• to all the classes outside of this package the member appears

to be private
class
• can be used only within that package.

• an object can be created by any other class in the package, but
not outside the package

• Since a compilation unit—a file—can belong only to a single
package,
all the classes within a single compilation unit are
automatically friendly with each other.
Thus, friendly elements are also said to have package access.

• allows you to group related classes together in a package so
that they can easily interact with each other

• all source files that are in the same directory and have no
explicit package name, are treated by Java as implicitly part
of the “default package” for that directory, and therefore
friendly to all the other files in that directory.

• If you create a new package and you inherit from a class in
another package, the only members you have access to are the
public members of the original package. (Of course, if you
perform the inheritance in the same package, you have the
normal package access to all the “friendly” members.)

protected
• variable → can be accessed from any method of any class in the

same package
• still has “friendly” access within package
• a subclass in another package can only access protected members

in the superclass via references of its own type or a subtypes.
public
• variable and method → visible anywhere its class is visible

o always use public static void main(String args[])
• class → visible anywhere

o Compile error:
o There can be only one public class per compilation unit

(file).
o each compilation unit has a single public interface

represented by that public class
o can have as many supporting “friendly” classes as

you want
o The name of the public class must exactly match the name

of the file containing the compilation unit, including
capitalization.

o It is possible, though not typical, to have a
compilation unit with no public class at all. In this
case, you can name the file whatever you like.

Note
• Just because a reference to an object is private inside a class

doesn't mean that some other object can't have a public
reference to the same object.

• you have only two choices for class access: “friendly” or
public.

• an inherited class
o can access a protected member as well as a public

member (but not private members).
o can access friendly members only if the two classes

are in the same package
Top-level Nested Classes and Interfaces

• also consider to be at the top level like an ordinary class or
interface

interface
• defined as a static member of an enclosing top-level class or

interface
• can be nested to any depth, but only within other static top-

level classes and interfaces
• Interface are implicitly static. Nested interface can

optionally be prefixed with the keyword static and have public
accessibility

• cannot have the same name as an enclosing class or package

Data Types
• Hexadecimal numbers are prefixed by 0x
• Primitive data types = char, int, long, float, double
• Unicode ⇒ prefixed by \u
• literal ⇒ the stated value

o character : always delimited by single quotes
• A = \u0041
 postfix #bit min max
char Character 16

Unicode

int Integer 32 -231 +231-1
long Integer l or L 64 -263 +263-1
float real f or F 32 ±1.4x10-45

(1.40239846)
±3.4x1038
(3.40282347)

double real d or D 64 ±4.94x10-324
(4.9406564584
1246544)

±1.8x10308
(1.7976931
3486231570)

• The use of a plus sign (+) is optional for positive literals.
• All decimal integer literals must begin with a digit in the

range 1…9 after the sign if one is present.
• Integer literals must not begin with 0 (zero)
• A real literal can be written in one of two ways: –123.456 or –

1.23456E+2
• double : double-precision
• default

o real : double
• \t → for a tabulation

\n → for a new line
• Boolean Data Type

o permitted to have only one of two values → true or
false

o initialized by Java to be false
• A white space character is generally regarded as either a

o space '\u0020'
o horizontal tabulation '\u0009'
o new line '\u000A'
o vertical tabulation '\u000B'
o form feed character '\u000C'

• A wildcard is a character that can represent a number of
different character.

o The wildcard * may represent any of the class names.
• the \uxxxx notation can be used anywhere in the source to

represent Unicode characters

represent Unicode characters
Identifiers

• may contain
o A-Z, a-z
o $
o _ (underscore character)
o 0-9

• may start with any characters with the exception of a decimal
digit

o may but avoid starting an identifier with _ or $
§ Often such characters are used in other

variables by the computer
• can normally be of any practicable length
• must not be the same as Java keywords
• When an identifier is constructed from more than one word, each

successive word should begin with an upper-case letter
KEYWORD

• Thoses words in a non-bold regular typeface are reserved by
java but currently unused.
abstract, boolean, break, byte, byvalue, case, cast,
catch, char, class, const, continue, default, do,
double, else, extends, false, final, finally, float,
for, future, generic, goto, if, implements, import,
inner, instanceof, int, interface, long, native, new,
null, operator, outer, package, private, protected,
public, rest, return, short, static, super, switch,
synchronized, this, throw, throws, transient, true, try,
var, void, volatile, while

DECLARATION AND INITIALIZATION

• data declarations must appear before the data instructions
Variables
• Variable Declaration:

dataType identifier;
dataType identifier1, identifier2, identifier3;

o Java automatically initializes all data of a primitive
type at the point of declaration.

§ interger → 0
§ real → 0.0
§ characters → \u0000

• Variable Initialization:
dataType identifier = literal;

• Only primitive data and reference values can be stored in
variables

Constants
• must be initialized at the point of declaration
• final dataType IDENTIFIER = literal;
• Convention: constant identifiers should be code in upper-case

letters
Unary operators ⇒⇒ have one operand
Binary operators ⇒⇒ have two operands
Referance
• Polymorphism allows a reference to denote different objects in

the inheritance hierarchy at different times during execution

the inheritance hierarchy at different times during execution
• a superclass reference can denote objects of its subclasses
• an interface reference can denote objects of classes that

implement the interface
Operator Precedence

priority
level

type operator symbol

1 unary negate -
1 unary plus +
1 cast a data

type
(type)

2 multiplicative multiply *
2 multiplicative divide /
2 multiplicative remainder %
3 additive add +
3 additive substract -
13 assignment equal =
• Expressions are evaluated by taking the operators with a

higher priority before those of a lower priority.
• Generally, where operators are of the same priority, the

expression is evaluated from left to right.
• Expressions in parenthesis will be evaluated before non

parenthesized expressions.
• Parenthesis, although not an operator, can be considered

as having an order of precedence after unary operators.
Increment/ Decrement Operators
• counter = counter + 1 → counter++
• counter = counter -1 → counter—
• System.out.println(counter++) will print the old counter

not the new one
Conditional Expressions
• can equate to one of the two values, either true or

false
• short-circuit evaluation

o only the condition X need be evaluated.
o when using logical AND, if condition X is false
o when using logical OR, if codition X is true
o Both logical && and ||use short-circuit evaluation.
o To avoid short-circuit evaluation, use the

corresponding logical operators & and |.

SELECTION
Rational operator
operator meaning
> greater than
< less than
== equal to
>= greater than or equal to
<= less than or equal to
!= not equal to
• Comparison of real numbers for equality should be avoid, since

real numbers are not always accurately stored by the computer.
• use the instance methods compareTo, equals and equalsIgnoreCase

defined in the String class, if need to compare the value of
strings

If…else
• if (conditionalExpression){statementWhenTrue;}

else {statementWhenFalse}
• if (conditionalExpression){statementWhenTrue;}
• if()

{
 if()
 …;
 else
 …;
}
else
{
 if()
 …;
 else
 …;
}

• If ()
 if ()
 …;
 else
 …;

• if ()
{
 if ()
 h;
}
else
 h;

• if (reply.equals("YES"))
 {
 h;
 }
 else
 {
 if (reply.equals("NO"))
 {
 h;
 }
 else
 error = true;
 }

 if (error)
 screen.println("DATA ERROR - reply not in correct format");
 else
 h;
Else If

if ()
 h;
else if ()
 h;
else if ()
 h;
else if ()
 h;
else ()
 h;
Switch
switch (expression)
{
 case c1: statement(s); break;
 case c2: statement(s); break;
 .
 .
 default: statement(s); //optional
}
• for selection based upon an ordinal type
• The expression must evaluate to an ordinal value
• Those values that are not represented by case labels will

result in the statement after the optional default being
executed.

• If the optional default statement was not present and the value
of expression does not satisfy any case, then the computer
would branch to the end of the switch statement.

• Without default option, no action would occur when a value was
out of range.

• necessary to include a way of exciting from the switch
statement at the end of every case.

o Failure to exit from the switch will result in the
execution of all the case statements following the
chosen case.

o One method of exiting from a switch statement is through
the use of a break statement at the end of every case
list. → causes the switch to terminate, and execution
resumes with the next statement (if any) following the
end of the switch statement.

• switch ()
{
 case 1: case 3: case 5:
 h; break;
 case 2:
 h; break;
}

• An ordinal variable → has a value that belongs to an ordered
set of items , eg

o integer
o character

• Real numbers and strings are not ordinal types.

REPETITION
While
while (conditional-expression)

{statement(s);}
Do……While
do statement(s) while (conditional-expression);
• always permits the statements within the loop to be executed at

least once by the computer.
For Loop
for (expression1; expression2; expression3) statement(s)
• expression1 → the declaration (if necessary) and initialization

of the loop control variable
o If expression1 is omitted, → the initialization (and

declaration) of the loop control variable must take
place before entry in the loop

• expression2 → a condition under which repetition will continue
o If expression2 is omitted, → then the loop does not

terminate unless it contains a break statement.
• expression3 → statement to increment or decrement the loop

variable.
o If expression3 is omitted, → then increasing or

decreasing the loop variable must take place within the
body of the loop.

• The expressions in a for loop are optional
• Even when the expressions are omitted in for loops, the

semicolon separators must be present
o infinite loop

for(; ;)
 {
 screen.println("forever and ever…");
 }

• for (expression1;
expression2; expression3)
statements(s);

• expression1;
while (expression2)
{
 statements(s);
 expression3;
}

• is normally used for counting.
• is a specialization of a while loop.

o can always replace a while loop with a for loop.
o cannot always replace a for loop with a while loop

Inner Classes

• There are no non-static inner, local or anonymous interface
Non-static Inner Classes
• defined without the keyword static, as members of an enclosing

class
• can be nested to any depth
• on par with other non-static members defined in a class
• an instance

o can only exist with an instance of its enclosing class.
o must be created in the context of an instance of the

enclosing class.

Ex Outside the enclosing class use enclosingObjectRef.new
Inner()
Outer outerRef = new Outer();
Outer.Inner innerRef = outerRef.new inner();
or
Outer.Inner innerRef = new Outer().new Inner();
or
Outer.Inner.Inner innerOfInnerRef = new Outer().new
Inner().new innerOfInnerRef();

 • // new Outer.Inner() → compile error
Ex In the enclosing class’s non-static member

• The return type can be Inner or Outer.Inner
• can say new Inner();
• instance variable: Inner innerRef = new Inner();

Ex In the enclosing class’s static member
• static variable:

static Inner innerRef = new Outer().new Inner();
• local variable in static method :

public static void method(){Inner innerRef = new
Outer().new Inner();}

• cannot have static members

(the class does not provide any services, only instances of the
class do)

• can have non-default constructors
• instance methods can directly refer to any member (including

class) of any enclosing class, including private members. No
explicit reference is required.
• Explicit reference to members in the enclosing class :

Outer.this.name or Outer.this.name()
• Shadowed Members

In InnerOfInner class’s non-static method ⇒ can have
• Name , this.Name , InnerOfInner.this.name

→ denote one of InnerOfInner
• Inner.this.name → denote one of Inner
• Outer.this.name → denote one of Outer

• These members are not overridden in the inner classes, as no
inheritance is involved.
Like any other class member, they have class scope.

• can have any accessibility
• multiple objects of the inner classes can be associated with an

object of an enclosing class at runtime
for each instance of the outer class, there can exist many
instances of a non-static inner class

• compiled to Outer$Inner.class , Outer$Inner$InnerOfInner.class
• can use the import statement to provide a shortcut for the

names of non-static inner classes
• can extend other classes
• can themselves be extended
• case

class B{}
class A

{
class C extends B{}

}
: If a name conflict arises,
the inherited member shadows the member with the same name in
the enclosing class
• The compiler requires explicit reference
• can’t say just the name in class C the compiler will

complain: “Ambiguous name: inherited ‘B.name’ and outer
scope ‘A.name’—an explicit ‘this’ qualifier is required”

• this.name will refer to the one of superclass
• A.this.name will refer to the one of exclosing class

Ex1
class Outer
{

public Inner makeInstance()
{

return new Inner(); //can use Inner() directly here
}
class Inner
{
}

}
public class Client
{

public static void main(String args[])
{

Outer outRef = new Outer();
Outer.Inner inRef = outRef.makeInstance();
//an instance of a non-static inner class must be created in
the context of an instance of the enclosing class

}
}
Ex2
class Outer
{

class Inner
{
}

}
public class Client
{

public static void main(String args[])
{

Outer outRef = new Outer();
Outer.Inner inRef = outRef.new Inner();
Outer.Inner inRef2 = new Outer().new Inner();

}
}
Ex3
class Outer
{

static Inner i = new Outer().new Inner();
Inner i2 = new Inner();
class Inner

{
}

}
Local Classes

Anonymous Classes
• defined at the location they are instantiated
• do not have a name
• an instance of the class can only be created together with the

definition
Ex
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
class FrameMouse extends Frame
{

public static void main (String[] args)
{

FrameMouse fm = new FrameMouse();
}
public FrameMouse()
{

addWindowListener
(

new WindowAdapter()
{

public void windowClosing(WindowEvent
e){dispose(); System.exit(0);}

}
);
setBackground(Color.pink);
setSize(500,500);
setVisible(true);

}
}

Static Initializers
⇒ a block of code preceded by the word keyword static.
• used to initialize a static variable in a class when simple

initialization is not appropriate
• is not like a class method;
• does not have a formal parameter
• does not have a name
• does not return a value
• is not called from another part of the program
• When a class is loaded, the static initializer is automatically

executed by the system before the main method is executed.
• A class may have a series of static initializers, one following

the next in a sequence.
o The system will execute all the static initializers in

sequence before executing the main method.
Ex
public class Class1

{
 static {String s = "assfd";}

public static void main(String args[]){}
}

Array
⇒ a data structure which defines an ordered collection of a fixed
number of homogeneous data elements
• are objects
• all elements in the array have the same data type
• size is fixed
• is indexed from 0 (zero)
• arrayName.length → return the length of an array
• The declaration of the size of an array, may be performed at

run-time, the size of the array is then fixed for for the
duration of the executing program.

• If the index goes out of bounds (not within the limits of the
array) then an ArrayIndexOutOfBoundsException is thrown.

• instance variable: length
• implicitly augment the inheritance hierarchy
• all array types implicitly extend the Object class
• Arrays of class types also extend the array type Object[]
• runtime: ArrayIndexOutOfBoundsException
One-dimensional arrays
Declaring:
Type[] arrayName
Type arrayName[]
o Note

o int a[], b; → only “a” is an array
o int[] a,b → both “a” and “b” are arrays

o only declared, not constructed or initialized
o instance/static array → initialized to the default

reference value null
o no default initialization for local reference variables or

local arrays
Constructing:
arrayName = new Type[noOfElement];
o min elements = 0

o a common natural occurance of an array of length zero ⇒
array given as an argument to the main() method when a Java
program is run without any program arguments

o all elements are initialized to the default value
o anonymous arrays

new Type[]{}
• int[] name; → null
• int[] numbers = new int[5]; → storage space is allocated to an

array using the keyword new
• int[] numbers = {1, 2, 3, 4};

numbers[0] → 1
• Object[] array = {new String(), new String(), null};
• int size = 5;

int[] numbers = new int[size];

//→ need to have the " = new int[size]" part
for (int index=0; index != size; index++)
{

numbers[index] = new
Integer(keyboard.readLine()).intValue();

}
• int[] numbers = {1, 2, 3, 4};

for (int index=0; index != number.length; index++)
{

screen.println("cell " + index + "\t" + numbers[index]);
}

Multidimensional arrays
• arrays in a multidimentional array need not have the same

lengththe dimensions must be created from left to right
o compile error: new int [][4]

• int[][] a ≡ int[] a[]
• int[][] A = {{1}, {1, 2}, {1, 2, 3}};

o A.length → 3
o A[1].length → 2

• int[][][] A =
{

{ {0,1}, {1,2}, {2,3} },
{ {1,2}, {2,3}, {3,4} },

 { {2,3}, {3,4}, {4,5} },
 { {3,4}, {4,5}, {5,6} }

};
• The declaration of an array may omit the lower-order

dimensions, provided those dimensions that are declared are
continuously described

o new int[20][15][][]
o // new int[20][][3] not OK

• for(int i=0; i != A.length; i++)
 {
 for(int j=0; j!= A[i].length; j++)
 {
 for(int z=0; z != A[i][j].length; z++)
 {
 screen.print(A[i][j][z] + "\t");
 }
 }
 }
java.lang.String
⇒ group of characters, that are stored as consecutive characters
in the memory of a computer, with each character being represented
by a 16-bit Unicode
String()
String(char[])
public String(char value[], int offset, int count)

o length = number of 16-bit Unicode characters
o offset argument : index of the first character of the

subarray
o count : the length of the subarray

String(String)
String(StringBuffer)

• not a primitive data type
• A string literal in Java is delimited by double quotes.
• “ABC” or “\u0041\u0042\u0043”
• default = null
• shortcut method for initializing a string

String objectName (= “argument-list”;)
• If you wish to assign one string to another, then the

assignment does not provide a copy of the value but merely a
reference to the value

• + → a string concatenation operator
• String objects are immutable → the contents of the string

cannot be changed
• public int length()

o length = number of 16-bit Unicode characters
• public char charAt(int index)
• public void getChars(int srcBegin, int srcEnd, char dst[], int

dstBegin)
o The first character to be copied is at index srcBegin; the

last character to be copied is at index srcEnd-1 (thus the
total number of characters to be copied is srcEnd-srcBegin).

o The characters are copied into the subarray of dst starting
at index dstBegin and ending at index: dstbegin + (srcEnd-
srcBegin) – 1.

• public boolean equals(Object anObject)
• public boolean equalsIgnoreCase(String anotherString)
• public int compareTo(String anotherString)

o Returns:
§ the value 0 if the argument string is equal to this

string;
§ a value less than 0 if this string is lexicographically

less than the string argument
§ a value greater than 0 if this string is

lexicographically greater than the string argument.
• public String substring(int beginIndex)
• public String substring(int beginIndex, int endIndex)
• public String concat(String str)
• public static String copyValueOf(char data[])
• public static String copyValueOf(char data[], int offset, int

count)
• public char[] toCharArray()
• public String toLowerCase()
• public String toUpperCase()
• public static String valueOf(boolean/char/char[]/double/float

d)
• public static String valueOf(char data[], int offset, int

count)
• A call to the instance methods toLowerCase() and toUpperCase()

on a string object will return a new string object, and will
not modify the original string

o If you intend to pass a string object as an argument,
with the intention of changing the values of the string
object → use the class StringBuffer to instantiate an
object that represents a string of characters

object that represents a string of characters
• The characters in a StringBuffer object can be

changed allowing the object to grow or shrink in
length as necessary.

• Ex StringBuffer data = new StringBuffer("abcde");

Exception Handling
• Exception need not be caught in the same context that it was

thrown in.
• The runtime behavior of the program determines which exceptions

are thrown and how they are caught
Exception Inheritance Hierarchy

java.lang

java.io

Error

InterruptedException

ArithmeticException

NullPointerException

ArrayIndexOutOfBoundsException

ClassCastException

IllegalArgumentException

NumberFormatException

RuntimeException IOException

FileNotFoundException

AWTException

Exception

Throwable

• java.lang.Error

o LankageError, ThreadDeath, VirtualMachineError
o invariably never explicitly caught
o usually irrecoverable

• java.lang.RuntimeException
o usually due to program bugs that should not occur in the

first place
o more appropriate to treat them as faults in the program

design, rather than merely catching them during program
execution

• unchecked exceptions ⇒ RumtimeException, Error and their
subclasses
o a method is not obliged to deal with them

• checked exceptions ⇒ all exceptions except unchecked exceptions
• Compiler ensures that

if a method can throw a checked exception, directly or
indirectly,
then the method must explicitly deal with it

o catch and take appropriate action
o pass on to its caller

• If not explicitly caught and handled by the program,
percolates upwards in the method activation stack, and
is dealt with by the default exception handler ⇒ usually print
s the name of the exception, with an explanatory message,
folloed by the stack trace

• new exceptions are created by extending the Exception class or
→

its subclasses → checked
try, catch, finally
try{}
catch(Exception1 e1){}
…
catch(Exceptionn en){}
finally{}
• the catch block and finally block must always appear in

conjunction with a try block, and in the above order
• try

• for each try block,
there can be ≥ 0 catch blocks,
but only one finally block

• must be followed by either at least one catch block or one
finally block

• termination occurs when
• encounter an exception → control is transferred to the

catch block, if any.
• if no catch block matches the thrown exception,

control is transferred to the finally block
• successful execution of the code inside → catch blocks

are skipped and the control is transferred to the
finally block, if one is specified

• catch
• take exactly one argument
• exception must be of the Throwable class or one of its

subclasses
• handle exception that is assignable to the reference type

of the parameter
• first matching catch is executed → all other catch blocks

are skipped → control is transferred to finally block
(regardless of whether the catch block itself throws an
exception)

• compile error: catch block for a superclass exception
shadows the catch block for a subclass exception
as the catch block of the subclass exception will never be
executed

• when exit catch block,
• if there is any pending thrown exception that not

handled → method is aborted → finally block executed,
if any → exception propagated

• if exception has been dealt with → finally block
executed → normal execution resumes

• finally
• if any code in the try block is executed, then the finally

block is always executed
• on exit, if there is any pending exception, the method is

aborted and the exception propagated
• An exception which is thrown in a finally block overrules any

previously unhandled exception, and is propagated in the usual
way.

throw

throw ExceptionTypeObjectRef
throw new ExceptionType()
• when an exception is thrown,

o normal execution is suspended
o runtime system proceeds to find a catch block that can

handle the exception
o the search starts in the context of the current try block,

propagating to any enclosing try blocks
and through the method invocation stack
to find a handler for the exception

o Any associated finally block of a try block encountered
along the search path is executed

o If no handler is found,
then the exception is dealt with by the default exception
handler at the top level

o If a handler is found, execution resumes with the code in
its catch block

throws
• in method header
• explicitly propagate the exception to its caller
• a method can only throw those checked exceptions that are

specified in its throws clause
• Overriding method: method definition in the subclass can only

specify all or subset of the exception classes (including their
subclasses) specified in the throws clause of the overridden
method in the superclass

