CS211 Prapun Suksompong
8/11/00 7:00 PM CS211-note-02-02.doc

To establish arelative order among function
Compare relative rates of growth

M athematical | nduction

of no use for deriving formulas
agood way to prove the validity of aformulathat you might
think istrue

never confuse MI with Inductive Attitude in Science. The latter
isjust aprocess of establishing general principles from
particular cases.

Statements proven by math induction all depend on an integer

Assume you want to prove that for some statement P, P(n) istrue
for al n starting with n = 1. The Principle (or Axiom) of Math
Induction states that for this purpose you should accomplish just
two steps:
1. Provethat P(1) istrue.
2. Assumethat P(k) istrue for somek. Derive from here
that P(k+1) isalso true.

Often it'simpractical to start with n = 1. M| applies with any
integer no. The result isthen proven for al n starting with no.
Sometimes, instead of 2., one assumes 2"

Assume that P(m) istruefor all m < (k+1).

Derive from here that P(k+1) isalso true.

The two approaches are equivalent.

Big-Oh notation

- efficiency indicator
instead of saying “order...,” one says“Big-Oh...”
is used to compare two functions
Typically, one function, which we'll call T(N), models the cost
of an algorithm using some cost metric. The other, which welll
cal f(N), gives an upper-bound on T(N).
Interestingly, O(f(N)) isaset of functions, since f(N) is
typically an upper bound on many different functions.

o Thisiswhy wehave said “"T(N) isin O(f(N))" rather
than " T(N) is O(f(N))".

want to ignore constant multipliers
Want to include the ““for sufficiently large N" in our formal
definition, since we've seen that the higher-order terms only
dominate when N is large enough.
describes an upper bound on the running time of an algorithm.
However, this bound need not be tight, nor does it tell us about
lower bounds.

Suppose you want to prove atheorem in the form
"For all integers n greater than equal to a, P(n) istrue"
P(n) must be an assertion that we wish to be truefor all n=a,
atl, ...; likeaformula
First, verify theinitial step ® verify that P(a) istrue
inductive step
0 prove
"If thereisak, greater than or equal to a, for which P(k)
istrue,
then for this samek, P(k+1) istrue."

Definition
T(N) = O(f(N)) if
there are positive constants ¢ and ng such that
T(N) £ cf(N) when N3 ng .

Big-Oh notation

Note on the definition
The cin this definition is used to account for constant
multipliers.

0 Since we can choose the multiplier for f(N), it doesn't
matter what multipliers we have for T(N), we can just
choose a bigger one.

The ng in this definition isused for *"sufficiently large”.

0 We choose an ng large enough that the dominating term

actually dominates.

Interpretation
- eventualy, thereis some point ng
past which c f(N) isalways at least aslarge as T(N)
the growth rate of T(N) is£ to that of f(N)
f(N) isan upper bound on T(N)
f(N) =WT(N)) ® T(N) isalower bound on f(N)

Blg—O allows us to ignore constant multipliers
o)
if f{(N) isin O(C*g(N)),
then f(N) isin O(g(N)) for all positive C

proof

1. Iff(N)isin O(C*g(N)),

then there exist M, and D, > 0 such that

for all N> M,

[f(N)| £ IDs* C*g(N)|. [By the definition of Big-O.]

Let M, = M;.

Let D, = |D*Cl.

For al N > M,, [f(N)| £ |D* C*g(N)|. [By step 1 and definition of M,.]
For al N> M,, [f{(N)| £ |D;*g(N)|. [By definition of D,.]

f(N) isin O(g(N)). [By definition of Big-O.]

ok wh

Big-O allows usto ignore lower order terms
o)
if
f(N) isin O(g(N) + h(N)) and
g(N) isin O(h(N))
then
f(N) isin O(h(N)).

proof

1. Iff(N)isin O(g(N) + h(N)),
then there exist M; and D, > 0
such that for all N greater than My,
[F(N)] £ 1D:*(g(N) + h(N)).
[By the definition of Big-O.]
2. If g(N)isin O(h(N)),
then there exist M, and D, > 0
such that for all N greater than M,,
lg(N)| £ [D2*h(N)|.
3. Let Mz =max(M;,My).
=} N>M3|S{N > MlandN > Mz}
For all N > M,
4. [[(N)|£D:*(g(N) + h(N))].
[By step 1 and definition of Ms.]
5. [f(N)| £ De*[g(N)+h(N)].
[If D>0, then |D*X| = ID[*|X]]
6. If((N) £ Di*[g(N)] + Ds*|h(N)].
[X+Y|£X[FIY[]
7. [f(N)| £ Di* [D2*h(N)| + Do* [h(N)].
[By step 2 and definition of Ms.]
8. [f{(N)| £ |(Ds*Dz+D1)* h(N)|.
[Various arithmetical manipulations; D; > 0.]
9. LetDs=D;* (1+Dy).
10. [f{(N)| £ [Ds*h(N)].
[Definition of Ds.]
11. f(N)isin O(h(N)).

[Definition of Big-O.]

Big-O istrangtive

if

f(N) isin O(g(N)) and

g(N) isin O(h(N))
then f(N) isin O(h(N))

proof
1. Becausef(N)isin O(g(N)),
there exist M, and D, such that
for all N> M,
(NI € DN
2. Becauseg(N) isin O(h(N)),
there exist M, and D,
such that for all N> M,,
lB(N)[£ ID2*h(N)!.
3. Let M3 = maX(Ml, Mz)
Then for al N> M,
4. [f(N)| £ D g(N)|
[By thefirst rule and the definition of Ms.]
5. ad
lg(N)| £ D+ h(N) »
[By the second rule and the definition of M3.]
6. Then
[Dr*g(N)| £ [Dy* D2*h(N)|.
[Since D, > 0, we can safely multiply both sides of an inequality for D, without affecting the
inequality.]
7. f{(N)| £ [Ds*Da*h(N)|.
[We can plug together variousinequalities using transitivity of inequality.]
8. Let Dz;=max(1,D,) * max(1,D,).
9. [f(N)I£Ds*h(N)|.
[Ds® Di*Dal]
10. Hencef(N)isin O(h(N)).
[By the definition of Big-O.]

The function g(N) isatight upper bound on f(N) if
1. f(N)isinO(g(N)) and
2. for al h(N) such that

f(N) isin O(h(N)),

g(N) isaso in O(h(N)).

style:
- Don’'t include constants or low-order termsinside aBig-Oh
Bad to say f(N) £ O(g(N))

because the inequality isimplied by the definition

Wrong to write f(N) 2 O(g(N))

® does not make sense

Rule

If
T1(N) = O(f(N)) and
T2(N) =O(g(N)),

then
0 Ti(N) +T2(N) =max(O(f(N)), O(g(N)))
0 Ti(N)* To(N) = O(f(N) * g(N))

log" N = O(N) for any constant k.

P logarithms grow very slowly

Include negative N

- toincorporate possibly negative results, we'll use absolute
value when we formalize Big-O.
T(N) isan element of O(f(N)) if and only if
there exist constants ¢ and ng such that for al N > no,

[T(N)I £ [c*f(N)].

The running time of afor loop is at most
the running time of the statements inside the for loop
(including tests)
times
number of iterations.
Nested loop ® Analyze theseinside out.
Consecutive statement ® just add ® the maximum isthe one
that counts
if(condition)
S1
else
S2
the running time of an if/else statement is never more than
the running time of the test +
the larger of the running times of S1 and S2
can be an overestimate, but never an underestimate

AnagorithmisO(log N) if
it takes constant (O(1)) timesto cut the problem size by a

fraction (which is usualy %)

An agorithmis O(N) if

constant timeis required to reduce the problem by a constant
amount

O(logaN) = O(log N)

al thelogy(N) are big-O of each others.

acommonly used trick to verify that some program is O(f(N)):
T(N) = empirically observed running time

T(N)

compute the value ——- . for arangeof N

(usually spaced out by factors of 2)

0 convergeto apositive constant ® tight answer
0 convergeto0® overestimate

0 convergeto¥ ® underestimate® wrong

Ioop ® &
for(inti =0; i<n; i++)
some operation that is O(1)

® 3 of)=n-of1)=0o(n)

i=0
for(inti = 0; i<n; i++)
some operatlon that is O(n¥)

® & ofi*)=08 i*%= o)
i=0 e=0 @

for(inti =0; i<g(n); i++)
some operation that isO(n¥)

® ao()=0 gal <2 of(g(m))

& olx)=ofx)

Typica growth rates

To analyze recursion
assume the running time is T(N)
write out the equation from the recursion relation from the

definiton of the method in terms of T(k) where k < N, constant,

and function of N

Function | Name

1 . retrieval of asingle dataitem from an array, when
you know wherethe dataitemis

Cc constant

|Og N |Ogar|thm|c the NCAA basketball tournament
average and worse-case efficiency of abinary search

log” N | log-

squared

N linear . average and worse-case efficiency of performing a
sequential search for adataitem in an array

N Iog N . average efficiency of performing a mergesort or a
quicksort on an array
space require for writing n number (each number take
log N length text to denote it value)
space require for keeping N datain alist (takelog N
to store thelink that differentiate all N data)

N 2 quadrati C average and worse-case efficiency of bubblesort or
selection sort
worse-case efficiency of aquicksort

N° cubic

N exponential Tower of Hanois

n! . combinatoric problems

Other definition

10 P f(N)=0(g(N))
i F(N) _ter 0P f(N)=Q(g(N))
ne¥ g(N) ¥ P g(N)=0(f(N))

foscillate P norelation

Omega: T(N) =W(g(N)) if

there are positive constants ¢ and ng such that
T(N)3 cg(N) whenN 3 ng.

b the growth rate of T(N) is3 that of g(N)

Theta: T(N) = Q(h(N)) if and only if
T(N) =O(h(N)) and
T(N) =WCh(N))

P the growth rate of T(N) is = that of h(N)
o If T(N)isapolynomial of degreek,

then T(N) = Q(N¥)

Little-oh: T(N) = o(p(N)) if
T(N) =O(p(N)) and
T(N)* Q(p(N))

P the growth rate of T(N) is< that of p(N)

Recursion

afunction that is defined in terms of itself is called recursive
base case ® the vaue for which the function is directly known
without resorting to recursion

should never be used as a substitute for asimple for loop

Define some measure of the
problem "N"

BASE CASE: Provethe
theorem holds for some base
case (N=0or N=1)
EXTENSION CASE:
Assume we have proven the
theorem for the "K-th" case,
show the proof holdsfor the
"K+1-st" case. (the
immediate problem)

Since we want a proof for
any N, you can stop here (at
N=K, sinceK isany vaue
anyway).

Define some measure of the
problem "N"

BASE CASE: Solvethe
problem for abase case
EXTENSION CASE:
Assume you can solve the
problem for the "K-th" case
by calling yourself
recursively for problem of
size"K", using solution
returned, solve the problem
for the"K+1-st" casein this
immediate step.

Stop when K=N or (if
working backwards from N,
when K=the base case).

Thlng to keep in mind
Base case ® Must always have some base cases, which can be
solved without recursion
Making progress® For the case that are to be solved
recursively, the recursive call must always be to a case that
makes progress toward a base case
Designrule® Assumethat all the recursive calls work
Compound interest rule ® Never duplicate work by solving
the same instance of a problem in a separate recursive call

o Don’'t compute anything more than once

tail recursion ® arecursivecall at thelast line

can be machanically eliminated by enclosing the body in a
while loop and replacing the recursive call with an assignment
per method argument (some compilers do it automatically)

recursion can always be completely removed
compilers do so in converting to assembly language

dthough nonrecursive programs are certainly generally faster than
recursive programs, the speed advantage rarely justifies the lack of
clarity that results from removing the recursion.

Abstract Data Types (ADTS)

P aset of objects together with a set of operations

List

Proof by Induction | Recursion

Simple Array Implementation of lists

0 insertion/deletion ® O(N)
o building alist by successiveinsert ® O(N?)

Linked lists

space require for keeping N linksto N data® O(N log N)
size of each addressisO(log N) ® to differentiateal N data
access i object, starting from head ® O(j)

access all object in thelist ® O(n?)

keep track of the last element ® access all object in the list

® O(n)

| terator

using a separate iterator class express the abstraction that the
position and list are really separate objects.
allowsfor alist to be accessed in several places ssimultaneously

cl ass Dat aHol der [// node

{

Cbj ect ob;
Dat aHol der next;
Dat aHol der (Obj ect ob)

{
/1 choose whether to make a copy
//or use the reference
this.ob = ob;
next = null;
}

public class LinkedLi st

{

Dat aHol der first, | ast;
Li nkedLi st ()

first = null;
| ast = null;

}
voi d addToEnd(Obj ect ob)
Dat aHol der dh = new Dat aHol der (ob) ;

//the list is enpty
if(first==null)

first = last = dh;
}
//this list is not enpty
el se
| ast. next = dh;
| ast = dh;
}

}

voi d insert(Object ob, int place)

{

//linsert to be the first el enent
i f(place==0)

Dat aHol der dh = new Dat aHol der (ob) ;
dh. next = first;

first = dh;
}
el se
{
//think of inserting at n as
/linserting at after n-1
Dat aHol der precede = at(pl ace-1);
/[l position n-1
i f(precede==null){/*error*/}
Dat aHol der dh = new Dat aHol der (ob) ;
dh. next = precede. next;
precede. next = dh;
}

Dat aHol der at (i nt n)

Dat aHol der finger = first;

if(first==null) return null; //enpty list
whi | e(n>0)
{
//too big n
if(finger.next == null) return null;
finger = finger.next;
n--;
}

return finger;

}
Cbj ect objectAt(int n)

Dat aHol der dh = at(n);
i f(dh==null) return null;
return dh. ob;

void traversel () //Q(n)

}
voi d traverse() //Q(n?
{
int i = 0;
String s = (String)objectAt(i);
whil e(s!=null)
{
Systemout.print(s + " ");
| ++;
s = (String)objectAt(i); //Q(n)
}
System out.print("\n");
}

voi d traverseF() //Q(n)

Dat aHol der finger = first;
whi | e(finger!=null)
{
Systemout.print((String)finger.ob + "
finger=finger. next;
} //violate encapsul ation
Systemout.print("\n");

")

{
LLIterator |i = new LLIterator(this);
while(li.hasNext())
{
Systemout.print((String)li.getNext().ob+ "
")
}
Systemout.print("\n");
}
}
class LLIterator
{
//the one you will return

/Iwhen using the getNext call
Dat aHol der current;
LLIterator(Li nkedLi st LL)

{
}

bool ean hasNext ()

current = LL.first;

return(current!=null);

}
Dat aHol der get Next ()

{
Dat aHol der ans = current;
if(current!=null)
current =current.next;
return ans;
}
}
Other

Doubly linked list
Circular linked list

Stack
- LI FO(lastin, first out) lists
inserts and del etes can be performed in only one position,
namely the end of thelist called the top.
The fundamental operations on astack are

0 pushp insert, and

0 pop b deletesthe most recently inserted element.

0 Themost recently inserted element can be examined

prior to performing a pop by use of the top routine.

A pop or top on an empty stack is generally considered an error
in the stack ADT.
running out of space when performing apush isan
implementation error but not an ADT error.
both the linked list and array implementations gives fast O(1)
running times for every operation

Balancing par entheses

- For simplicity, we will just check for balancing of parentheses,
brackets, and braces and ignore any other character that
appears.

Make an empty stack.
Read characters until end of file.
If the character is an open anything, push it onto the stack.
If it isaclose anything, then

o if the stack isempty report an error.

0 Otherwise, pop the stack.

= |f the symbol popped is not the corresponding
opening symbol, then report an error.

At end of file, if the stack is not empty report an error.

Postfix Expressions

postfix or reverse Polish notation
there is no need to know any precedence rules

When anumber is seen, it is pushed onto the stack;

when an operator is seen, the operator is applied to the two
numbers (symbols) that are popped from the stack and the
result is pushed onto the stack.

The time to evaluate a postfix expression isO(n)

I nfix to Postfix Conversion

- concentrate on asmall version of the general problem by
alowing only the operators +, *, and (,), and insisting on the
usual precedencerules.
assume that the expression is legal

start with an initially empty stack.
When an operand isread, it isimmediately placed onto the
output.
place operators that have been seen onto the stack
stack left parentheses when they are encountered.
If we see aright parenthesis, then we pop the stack, writing
symbols until we encounter a (corresponding) left parenthesis,
which is popped but not output.
If we see any other symbol ('+',*",'("), then we pop entries
from the stack until wefind an entry of lower priority.
0 Exception: never remove a'(' from the stack except
when processing a ')’
0 When the popping is done, we push the symbol onto
the stack.
Finally, if we read the end of input, we pop the stack until itis
empty, writing symbols onto the output.

Queue

islist

insertion is done at one end, whereas deletion is performed at
the other end

both the linked list and array implementations gives fast O(1)
running times for every operation

basic operations on aqueue are
enqueue b inserts an element at the end of thelist (called the
r%r)l
dequeue P deletes (and returns) the element at the start of the
list (known as the front).

| Tree

is a collection of nodes

consists of
o adistinguished noder ® theroot, and
0 zeroor more (sub)trees Ty, To, .. ., Tk,

each of whose roots are connected by a directed edge to
r
The collection can be empty, which is sometimes denoted as A
The root of each subtree® achild of r, and
r ® parent of each subtree root.
Each node may have an arbitrary number of children, possibly
zero.
Nodes with no children® leaves
Nodes with the same parent ® siblings
grandparent
grandchild
A path from node n; to ni is defined as a sequence of nodes ny,
Ny, ..., Ngsuch that n; isthe parent of nj+q for 1=i <k
Thelength of this path isthe number of edges on the path,
namely k -1.
Thereisapath of length zero from every node to itself.
in atree there is exactly one path from the root to each node
the depth of node n; isthe length of the unique path from the
root to n;.
theroot is at depth O.
The height of node n; is the longest path from n; to aleaf.
all leaves are at height O.
The height of atree = the height of the root.
If thereisapath from n; to ny, then ny isan ancestor of n, and
Ny isadescendant of n;.
o If np#ny, then
= npisaproper ancestor of ny
= nyisaproper descendant of ny

running time of most operationsis O(log n) on average
atreeisacollection of n nodes, one of which istheroot, andn
- 1 edges.

0 That therearen - 1 edges follows from the fact that
each edge connects some node to its parent, and every
node except the root has one parent

generally drawn as circles connected by lines (because they are
actually graph)
do no explicitly draw null links

One natural way to define atreeisrecursively

| mplementation

- to havein each node, besides its data, a pointer to each child of
the node.
since the number of children per node can vary so greatly and
is not known in advance, it might be infeasible to make the
children direct links in the data structure, because there would
be too much wasted space.
solution ® keep the children of each nodein alinked list of
tree nodes.

cl ass TreeNode

{
Obj ect el enment;
TreeNode firstcChild;
TreeNode next Si bl i ng;

}

Binary Trees

no node can have more than 2 children

N nodes have N+1 null links
2N —N + 1(root)

Expression trees

|leaves nodes contain operands

other nodes contain operators.

To evaluate ® applying the operator at the root to the values

obtained by recursively evaluating the left and right subtrees

inorder traversal (left node right)

postorder traversal (left right node)

preorder traversal (node left right)

constructing an expression tree from postfix string

0 read expression 1 symbol at atime

o if symbol isan operand ® create one-node tree and push it
onto stack

o if symbol isan operator ® pop 2 trees T1 and T from the
stack (Ty is popped first) and form anew tree whoseroot is
the operator and whose left and right children are T, and
T1. Thisnew treeisthen pushed onto the stack.

class ArTree extends BinaryTree

cl ass BinaryTree

{
String dat a;
Bi naryTree left,right;
Bi naryTree(String d, BinaryTree |, BinaryTree r)
data = d;
left =1;
right =r;
b |
Bi naryTree(String d)
this(d,null,null);
}
}

{
int eval uate()
if(left==null && right==null)
return | nteger. parselnt(data);
i f (data.equal s(“+")
return left.eval uate()+right.evaluate();
i f(data.equal s(“*")
return left.evaluate()*right.evaluate();
}
String infixString()
if(left==null && right==null)
{
return data;
}
return “(" + left.infixString() + data +
right.infixString() + “)”
}
String postfixString()
if(left==null && right==null)
{
return data;
return left.postfixString() +
ri ght.postfixString() + data,;
}
}

constructing an expression tree from infix string

0 Depth of an operator in terms of parens can be found by using
stack, depth isthe number of “(* *sthat are found in the stack
when encounter the operator.

Bool ean i sANunber () ;

Bool ean i sParent hesi zed() ;
Bool ean i sConpound() ;

voi d deParent hesi zed();

/1if there is a +,- otherwise *,/ at |evel
/1 (surrounded by 0 parens)
//take the first(last?) one
String getOperator();
String getlLeftExp();

String getRi ght Exp();

voi d buil dTree()

i f(isParenthesized())
dePar ent hesi zed() ;
i f(isANunber())

0

Consider the game:
Set value for each node with respect to player x
win=1,draw =0, lose=-1
If work by hand ® go from deepest level up (the value at
leavesis known)
If work recursively ®
0 at leaves (the end of the game), return the value of the
node
o0 at node followed by the edge of player X’smove ®
return the max value of children nodes
® equivalent to choosing the best move for player X
o0 at node followed by the edge the is not of player X's
move® return the min value of children nodes
® equivalent to choosing the worst move for player X

Graph
0 can have multiple pathwaysto a state
o if can afford to ignore history, we can make asmaller
graph by only recording state and transition.

Binary search tree

return;
i f(isConmpound())
{
String op = getOperator();
String leftString = getlLeftExp();
String rightString = getRi ght Exp();
data = op;
left = new BinaryTree(leftString);
right = new BinaryTree(rightString);
left.buildTree();
right.buildTree();
}
}
}
Treetraversal

preorder: node, children(in order)
inorder: 1% child, node, other children
postorder: children(in order), node

depends on
0 dataand
0 order of insertion
worst case for the depth is when the data are already sorted.
average depth: O(log n)
worst case building: O(n?)
average building: O(n)” O(d) = O(n log n)

Analyzing game using tree

tree may log the same state multiple times

Properties
for every node, X, inthetree,
o thevaluesof al theitemsin the left sub-tree are smaller
than theitem in X, and
o thevauesof al theitemsin the right sub-tree are larger
than theitemin X.
® make abinary treeinto abinary search tree

cl ass BinaryTree
{
Conpar abl e dat a;
Bi naryTree |l eft,right;
BinaryTree(String d, BinaryTree |, BinaryTree r)
{
dat a
| eft l;
right =r;

}
Bi naryTr ee(Conpar abl e d)

this(d,null,null);
}
Bi naryTree()

this(null,null,null);

}

Insertion
if at an empty node ® insert
otherwise recursively insert into
0 left sub-treeif lessthan current value
0 right sub-treeif greater than current value
worst case : O(n?)
voi d insert (Conparabl e x)

{
i f (data==null)

{

data = x;
el se if(x.conpareTo(data)<0)

if(left==null) |eft=new BinaryTree(x);
el se left.insert(x);

el se if(x.conpareTo(t.data) > 0)

if(right==null) right=new BinaryTree(x);
el se right.insert(x);

}

el se
doSonet hing(); //Match

Find
Conpar abl e fi nd(Conpar abl e x)
{

i f(x.conpareTo(data)<0)
if(left==null) return null
return left.find(x);

el se if(x.conpareTo(t.data) > 0)
if(right==null) return null
return right.find(x);

}

el se
return data; //Match

}

crutial that the test for an empty tree be performed first, since
otherwise, we would generate a Null PointerException
attempting to access adata field through a null reference.
both recursive calls are actually tail recursions

0 can be easily removed with awhile loop.

Conpar abl e findM n()

if(left==null) return data;
return left.findMn();

}
Conpar abl e findMVax()

{
BinaryTree tenp = this;
whi | e(right!=null)
{
tenp = tenp.right;
}
return tenp.data;
}

Deletion
aleaf ® just deleteit
anode with asingle child® can be deleted after its parent
adjusts alink to bypass the node
anode with 2 children® replace the data of this node with the
smallest data of the right subtree (which is easily found) and
recursively delete that node.

voi d del et e(Conpar abl e x)
i f(x.conpareTo(data)<0)
if(left==null)
{

//no X in this tree
return;

el se left.delete(x);
el se if(x.conpareTo(data)>0)
i f(right==null)

//no X in this tree
return;

el se left.delete(x);
}

el se

//x is in this node

if(left==null && right==null)
//this is a leaf, just delete it

{

}
/1 Nodes that has only one child

/1 (left or right)
else if(left!=null && right==null)

{

this = null;

this = this.left;
}
else if(left==null && right!=null)
{

this = this.right;

el se //have left and right children

{
data = right.findMn();
ri ght.del ete(data);
//this node cannot have left child
//so it won't fall into this case again
}
}
return;

}

To get the dataout in sorted order ® traversein inorder
The running time of all the operationsis O(depth)
depth = depth of the node containing the accessed item

after O(n?) #insertions=#deletions , depth is O(«/ﬁ)

independent method for binary search tree

public static int binarySearch(Conparable [a],
Conpar abl e x)

{

int low = 0;
int high = a.length-1;

whi | e(l ow <= hi gh)
{
int md = (lowthigh) / 2
/1if the mddle is | ess than x,
// change to consider only the right half
if(a[md].conmpareTo(x) < 0)
[ow = m d+1;
/1if the mddle is nore than x,
// change to consider only the left half
else if(a[m d].conmpareTo(x) > 0)
high = md-1;
el se
return md; //found

}
return NOT_FOUND

}

complete binary tree
the height of a complete binary treeis dog N (j = O(log N)
0 can berepresented in an array and no links are
necessary

0 noelementinarray[0]

o for any element in array position i
= |eft child = array[2*i]
= right child = array[2*i+1]

= parent = array %%é

0 estimate of the maximum heap sizeisrequiredin
advance

AVL Trees

(Adelson-Velskii and Landis)
abinary search tree with a balance condition
depth of thetreeis O(log N)
for every node in the tree, the height of the left and right
subtrees can differ by at most 1
the height of an empty tree is defined to be -1

insert X

per colate up

- create ahole in the next available location
if x can be placed in the hole without violating heap order, then
we do so and are done.
otherwise, slide the element that isin the hold’ s parent node
into the hole, thus bubbling the hole up toward the root
continue this process until x can be placed in the hole

Binary Heap

P abinary treethat is completely filled, with the possible
exceptlon of the bottom level, which isfilled from left to right
implement Priority Queues (Heaps)
heap-order property ® any nodeissmaler than al of its
descendants
the minimum element can always be found at the root
findMin() ® O(1)

voi d insert(Conparable x) //Q(log N)

{
int hole = ++currentSize();
for(;hole > 1 &&x.conpareTo(array[hol e/ 2]) <0;
hole /= 2)
{
//get value fromits parent
array[hol e] =array[hol e/ 2] ;
array[hole] = x;
}

sentinel: small valuein position O inorder to make the loop
terminate
0 must be guaranteed to be £ any element in the heap

del

eteMin
create a hole at the root
store the last element X
if X can be placed in the hole, done
otherwise, dide the smaller of the children into the hole, thus
pushing the hole down one level
repeat until X can be placed in the hole

Graph

void deleteMn() //O(log N)

int hole = 1; //the root

array[hole] = array[currentSize--];

/ / percol ate down

int child;
Conparabl e temp = array[hol e];
for(;hole*2 <= currentSi ze; hol e=chil d)
{
chil d=hole*2; [/left child
/[1if right child is less than left child,
/luse right child
if(child!'=currentSize &&
array[chil d+1] . conpareTo(array[chil d]) <0)

{
chil d++;
}
if(array[child].conmpareTo(tnp)<0)
{
array[hole]=array[child]; //nmove child up
}
el se

br eak;

array[hole] = tenp;

}

G=

(V.E)
V = set of vertices
E = set of edges
IE| = O(IVP’) (can be alot less than this)
edge = arcs= apair (v,w) wherevw1 V
if the pair is ordered, the graph isdirected ® digraph
optional component: weight/cost

vertex w isadjacent tov if and only if (vw) 1 E
path = sequence of verticeswy,...,wy such that (wi,wi+1) 1 E
forLEi<N.

o length = number of edges on the path = N-1

o alow path from vertex to itself

= if this path contains no edges, the path
length=0
o simplepath ® al verticesare distinct, except that
thefirst and the last could be the same

cycle

o0 inadirected graph® path of length at least 1 such

that W1 =Wm

0 inundirected graph® distinct edges

DAG: directed acyclic graph ® directed graph with no cycle

can buildHeap() with N successive inserts® O(log N)* O(N)
=O(N logN)

finding the k™ smallest element: perform k deleteMin operation
® O(buildHeap) + O(k log N)

connected undirected graph® thereisa path from every
vertex to every other vertex
strongly connected directed graph ® thereisa path from
every vertex to every other vertex
weakly connected directed graph ® the underlying graph
(without direction to the arcs) is connected
complete graph ® thereisan edge between every pair of
vertices
indegree of avertex v® #edges (u,v)
weighted graph ® associated with each edge (v;,v;) isacost
Cij to traverse the edge
N-1
weigthed path length ® the cost of apath vi...vy = 601 Cin
i=1
unweighted path length ® the number of edges on the path =
N-1
diameter = 5nwa\>/<{dist(v, w}

voi d topsort() throws CycleFound //Q(|V]?
{

Vertex v, w

for(int counter=0; counter<|V|; counter++)
{
/11 ook for a vertex with indegree 0
//that has already been assigned topNum
v = findNewVertexCOf DegreeZero(); //Q(|V])
i f(v=null)
t hrow new Cycl eFound();
v.topNum = counter;
for each w adjacent to v
w. i ndegree- -;
}

}

unweighted shortest-path

Representation of agraph
adjacency matrix ® use2-d array
o space O(|VP)
o appropriateif the graph isdense: [E| = Q(V[)
adjacency list
o thestandard way to represent graphs
0 space: O(|E[+|V])

Given an unweighted graph G. Using some vertex, s, whichisam
|nput parameter, find the shortest path from sto all other vertices
consider only the #edges contained on the path
no weights on the edge
special case of weighted shortest-path problem, could assign all
edges aweight of 1.
breadth-first search

look for al verticesthat are at distance 1 away from s®
verticesthat are adjacent to s

Topological sort

P an ordering of verticesin adirected acyclic graph, such that
if thereisapath from v; to v;, then v; appears after v; in the
ordering

not possibleif the graph hasacycle

find any vertex with no incoming edges, print it and remove it
along with its edge
apply this same strategy to the rest of the graph

voi d reset ()

currMaxDi st = 0;
for(int i=0;i<vertex.size();i++)

Vertex v = vertex. At(i);
v. known = fal se;

v.dist = INF;

v.via = null;

voi d AssignDi st (int base) 77Q(|V]?)

Vertex v, w
vertex. At (base).dist = 0;
for(int currD st=0; currDi st < vertex.size(); currD st++)

for(int i = 0; i<vertex.size();i++)
{

v = vertex. At(i);

if(!v.known && v.dist==currDi st)

{
v. known = true;
Li st adjList = edge.elementAt(i);
//for each w adjacent to v
for(int j =0; j<adjList.size();]j++)
w = adjList.At(j);
if(w dist==Vertex.|NF)
w. di st = currDi st +1;
w. path = v;
currMaxDi st =curr Di st +1;
}
}
}

voi d AssignDi st (int base)

{
Vertex v, w
vertex. At (base).dist = 0;
vertex. At (base). known = true;
bool ean al | Known = fal se;
whi | e(!al | Known)

al | Known = true;
for(int i = 0; i<vertex.size();i++)
{

v = vertex. At (i);

i f(v.known)

Li st adjList = edge. At(i);
for(int j =0; j<adjList.size();]j++)

w = adjList.At(j);
i f(!w known)

w. di st = v.dist+1;

w. known = true;
curr MaxDi st =w. di st ;

}

el se{al | Known = fal se;}

}
}

single-source shortest path problem

Given asinput aweighted graph, G=(V,E), and a distinguished
vertex, s, find the shortest weighted path from sto every other
vertex in G

no edge of negative cost ® the shortest path between two
points is undefned

negative cost cycle® when oneis present in the graph, the
shortest path are not defined

the shortest path from sto sisO

currently, there are no algorithms in which finding the path
from sto one vertex is any faster (by more than a constant
factor) than finding the path from sto all vertices

Initialization
al vertex.known = false
al vertex.via= null
al vertex.dist = ¥

set basePoint.dist = 0;

Dlijtl’a salgorithm

solve the single-source shortest-path problem
for weighted graph
for unweighted graph, assign all weight to be 1
works with directed or undirected graph
greedy algorithm ® generally solve a problem in stages by
doing what appears to be the best thing at each stage
0 do not alwayswork
dv = the shortest path length from sto v using only known
vertices as intermediates
pv = the last vertex to cause achangeto d,

v | known | dist | py

whi l e(not all known)

{
find unknown with mn dist v
mark it known
find all adjacent vertices
for each unknown adj acent vertices w
if(v.dist + weight of edge (v,w) < w dist)
update dis w
set wvia = v
}
}
}

void dijkstra(int base)
{
reset();
Vertex v, w,
vertex. At (base). di st = 0;
for(;;)
{
//v = the small est unknown di stance vertex
i nt m nUnknownV = noV;
//this will get changed
//if unknown vertex(s) is found
i nt m nUnknownVal ue = Vertex. | NF;
for(int i=0;i<vertex.size();i++)
{
Vertex p = vertex. At(i);
i f(!p.known)
{

i f(p.dist < mnUnknownVal ue)

m nUnknownVal ue = p. di st;
m nUnknownV = i;

}

// m nUnknownV is still nopath
//® no unknown vertex ® done
i f (m nUnknownV == noV)

br eak;

v = vertex. At (m nUnknownV) ;
v. known = true;
Li st adjLi st = edge. At (m nUnknownV) ;
//for each unknown w adjacent to v
for(int i=0; i<adjList.size(); i++)
{

w = adjList.At(i));

i f(!w known)

int d = distance(v,w);
if(v.dist +d < wdist)
{
w. dist = v.dist + d;
w.via = v;

voi d printPath(Vertex v)

if(v.path !'= null)
{
print Pat h(v. path);
Systemout.print(* to “);
}
Systemout.print(v);
}

null

null

null

null

withmindist=0

always works as long as no edge has a negative cost
running time
- 1f scanning down array to find minimum dy
each stage use O(|V|)
have to run thisO(|V|)
s0, use O(|V[?) to find minimum in this code
the update is O(|E|)
so running time: O(IE+V) = O(V)
to date, there are no meaningful average-case results for
this problem

null

null

null

OOI\JHO% WINF| O

+|<+|<+|<o§+|<+|<+|<o
R R R

null

-0 isconnected to 1,2 both unknown
-for 1: 0+10< ¥

null

0

null

Example

WIN|FLO

=
o
T T T

null

0® 1(10), 2(2)
1® 0(10),3(1)
2® 0(1), 3(1)
3@ 2(1),1(1)

-for2: 0+1< ¥

null

0

0

WINF O

=
o
mimim| -

null

not all known

unknown with min dist=2

0O | T|null

10| F| O

1 |T|0

w|N| ol

Y | F| nul

2 isconnected to 0,3 only 3 isunknown
for3: 1+1=2<¥

0[O0 | T | nul
1/10|F| O
2/1 |T|O
312 |F|2

not al known
unknown with mindist =3
O | T| nul
10|F|O
1 |T|O
2 |T|2
3isconnected to 2,1 only 1 is unknown
for1:2+1=3<10
T | null
F|O
T|0
T|2

w|N| ol

XN =)
Nl |lw|ol

not all known
unknown withmindist =1
O | T| null
10/F|O
1 |T|O
2 |T|2
0 1isnot connected to any unknown things
done

wlnl—|o]

All-pair shortest path
® run Dijkstra|V|times® O(V[)

Acyclic graphs: critical path analysis

dijkstra can be donein one pass

running time: O(|E[+|V|)

activity-node graph

0 node® an activity that must be performed, along with time
it takes to complete the activity

0 edge® precedence relationship: (v,w) = activity v must be
completed before activity w may begin

assume any activities that do not depend (either directly or

indirectly) on each other can be performed in parallel by

different servers.

Ans.

0 what isthe earliest completion time for the project

0 which activities can be delayed, and by how long, without
affecting the minimum completion time

event-node graph ®

0 event ® the completion of an activity and all its dependent
activities

0 eventsreachable from anode v may not commence until
after the event v is completed

o dummy edges (weight 0) and nodes may need to be inserted
in the case where an activity depends on several others

find the length of the longest path from the first event to the

last event

v.E = earliest completion time @ node v

startVertex.E = O;
start Vertex. known = true;
whi | e(not all known)

for all unknown vertices v

{

if(all parents wof v are known) //w®v

- +
v.E (W’ryﬁaéjge(w.E CW’V)
V. know = true
}
}
}

v.L =thelatest time that each event can finish without
affecting the final completion time

final Vertex.L = final Vertex. E
final Vertex. known = true;
whi | e(not all known)

for all unknown vertices v
{
if(all children wof v are known) //v®w
{
v.E= min (W.L-)
(v,w)l Edge CV’W
v. know = true
}

}
}

dlack time for each edge

= the amount of time that the completion of the corresponding
activity can be delayed without delaying the overall completion
dackyw = Lw-ErCyw; VO W

because

v have to be reached before day E,

w don’'t have to be reached until day L

so, thetimeto dotheedge=Lw—Ey

activity that has 0 lack ® critical activity, must finish on
schedule

critical path ® (at least one for graph) consist entirely of
zero-dack edges

Maximum-Flow Algorithm
- edge capacities cyw
Vertex s® source; t® sink
through any edge (v,w), at most ¢, units of flow may pass
at any vertex v that isnot s or t, the total flow coming in must
equal the total flow going out
maximum flow problem ® determine the maximum amount of
flow that can passfromstot
directed
acyclic is not arequirement

have 3 pictures at each stage
o G:theorigina graph, telling capacity, never changed
0 Gs:theflow used currently
0 G :residual graph ® how much more flow can be added
= residual edge
= eachedge® 2residual edges
= same direction: amount that can send more =
capacity - currentAmount
= opposite direction: amount that can send back =
current amount (but opposite direction)
® allow the algorithm to undo its decisions
don’t draw O edges
at each stage, find apath fromstotin G, ® augmenting path
- nondeterministic
minimum edge on this path is the amount of flow that can
be added to every edge on the path
determine by
unweighted shortest-path algorithm
or modified Dijkstrato find one that allows the largest
increasein flow
adjust Gy
recomputed G;
when thereisno path fromstot ® done

if the edge capacities are rational numbers, this algorithm
aways terminates with a maximum flow

Minimum Spanning Tree

of an undirected graph
b atreeformed from graph edges that connected all the vertices
of G at lowest total cost

Spanning tree
- existsif and only if Gisconnected
minimum |E| = [V|-1
acyclic® tree
Spanning ® coversevery vertex
if an edge e, that isnot in the ST is added
® acycleiscreated
o removal of any edge on the cycle
= reinsates the spanning tree property
= if ehaslower cost than the edge the was
removed ® cost of spanning treeislowered
Add edge when a spanning tree is created
o if edgeisone of the minimum cost that avoids creation
of acycle
® cost of the resulting spanning tree cannot be
improved
because any replacement edge would have cost
at least as much as an edge already in the
Spanning tree

choose any vertex to be starting point
o d =0
o p, =itself
//the tree (of known vertex) grows by 1 every | oop
whi | e(not all known)
{
find unknown vertex v with mn dist
mark it known
for each unknown vertex w adjacent to v
{
if(cwy < current dy)
{
dw = Cwv;
set w.via = v;
}
}

At any stagein the algorithm, we find a new vertex to add to
the tree by choosing the edge (u,v) such that the cost of (u,v) is
the smallest among all edgeswhere uisin thetreeand v isnot
each step adds one edge and one vertex to the tree

running time

= O(|V[?) without heap ® optimal for dense graphs

= O(|EJlog|V]) using binary heaps

Prim’s Algorithm
- runon undirected graph
have to put every edge in 2 adjacency list
dv = the weight of the shortest edge connecting v to aknown
vertex
pv = the last vertex to cause a change in dy

Kruskal’s Algorithm
maintains aforest ® collection of trees

v | known | dy | pv

public void kruskal ()
{
int edgesAccepted = 0;
Di sj Set s;
PriorityQueue h; //using heap
Vertex u,v;
Set Type uSet, vSet;
Edge e;

//create heap from wei ght of edges
h = readG aphl nt oHeapArray();
h. bui | dHeap() ;

/linitially there are |V|] single-node trees
/leach vertex is initially inits own set
s = new Di sj Set (NUM_VERTI CES) ;

//term nate when enough edges are accepted
//required |V|-1 edges
whi | e(edgesAccepted < NUM VERTICES - 1)
{
//select the edge in order of snallest weight
e = h.deleteMn();
/' make edge e = (u,V)
uSet = s.find(u);
vSet = s.find(v);
/laccept an edge if it does not cause a cycle
if(uSet != vSet)

| accept the edge

edgesAccept ed++;

//addi ng an edge nerges 2 trees into one
s. uni on(uSet, vSet);

}

//when the al gorithmterm nates,
//there is only one tree ® m ni num spanning tree

Summary: Application of graph

edge: distance, time, cost, capacity
node: activity, location

Dijkstra

whi I e(not all known)
{
find unknown with mn dist v
mark it known
find all adjacent vertices
for each unknown adj acent vertices w

if(v.dist + weight of edge (v,w) < wdist)

update dis w
set wvia = v

}
}

critical path analysis
0 edge: task , weight: time this task take
0 node: completion of edge beforeit

u and v belong to the same set

if and only if

they are connected in the current spanning forest

if uandv areinthe same set, ® theedgeisregected - since
they are already connected, adding (u,v) would form acycle

startVertex.E = O;
start Vertex. known = true;
whi | e(not all known)

worst-caserunning time® O(E|logEl) ~ dominated by the
heap operations
= O(E[logV|) since|E| = O(VP)

{
for all unknown vertices v
if(all parents wof v are known) //w®v
E= max (WE+
! (w,w)i Edge(CWV)
V. know = true
}
}
}
Sorting
Insertion sort
O(N?)
Bucket sort

Application
wire a house with a minimum of cable

have N integersintherange 1to M (or O to M-1)

keep an array called count[M], initialized to O

When A; isread, count[A]++.

After adl theinput is read, scan the count array, printing out a

representation of the sorted list
O(M+N)

Radix sort

use several passes of bucket
bucket-sort by the least significant “digit” significant
more than one number could fall into the same bucket and
these numbers could be different ® keep theminalist
Bad ideato use array since all number can have adigitin
common (worse case for space), this will make a bucket of that
digit becomes size = N. Don’t know which one® every
bucket'ssize= N ® space= O(N?)
when several numbers enter a bucket, they enter in sorted order
running time® O(P(N+B)) ® O(N)

0 P =number of passes (digit), usually constant

0 N = number of element to sort

0 B =number of bucket, usually << N

tnpArray[t mpPos++] = a[ri ght Pos++];
}

//one of the following 2 while loop will actually used
//it is used to

//copy the rest of the “either” left “or” right half
whi | e(| ef t Pos<=Il ef t End)

{

}
whi | e(ri ght Pos<=ri ght End)

tnpArray[t npPos++] = a[l eft Pos++];

tnpArray[tmpPos++] = a[right Pos++];
}

// copy tnpArray back
for(int i=0; i<numfELements; i++, rightEnd--)
{

}
}

a[rightEnd] = tnpArray[rightEnd];

Mergesort

static void nergeSort (Conparabl e[] a)

{
Conpar abl e[] tnmpArray = new Conparabl e[a. | engt h] ;
nergeSort(a, tnpArray, 0, a.length-1);

}

worst-case O(N log N)

merge O(N) =

at most N-1 comparisons are made

takes 2 input arrays A and B, an output array C, and three
counters, Actr, Bctr, and Cctr, which areinitially set to the
beginning of their respective arrays

the smaller of A[Actr] and B{ Bctr] is copied to the next entry
in C, and the appropriate counter are advanced.

When either input list is exhausted, the remainder of the order
listiscopiedto C

static void nergeSort(Conparabl e[] a, Conparable[] tnpArray,
int left, int right)

i f(1eft<right)

int center = (left+right)/2;

nergeSort(a, tnmpArray, left, center);

nergeSort(a, tnpArray, center+1, right);

nerge(a, tnpArray, left, center+l, right);
}

T() =1, T(N)=2T(N/2) +N® T(N)=NlogN + N
=O(N logN)

static void nerge(Conparable[] a, Conparable[] tnpArray,

{

int leftPos, int rightPos, int rightEnd)

//leftPos, rightPos ® where we’'re considering now
int leftEnd = rightPos - 1;
int tnpPos = | eftPos;
//will denote position in the tnpArray considered now
int nunkEl ements = rightEnd — leftPos + 1;

whi | e(| eft Pos<=l ef t End && ri ght Pos<=ri ght End)
if(a[leftPos].conpareTo(a[rightPos])<=0)

tnpArray[t npPos++] = a[l eft Pos++];
el se

use O(N) extramemory

QUI cksort

- fastest known sorting algorithm in practice
average: O(N log N)
worst case: O(N?)

If the number of elementsin Sis0 or 1, then return
Pick any element vin S® pivot
0 works no matter which element is chosen
0 good choice® median of first,center,last

Partition S-{v} into 2 digoint groups:

0 S;={xI S{V}|xEv}

0 S={xI S{v}|x3v}
Return { quicksort(S;) followed by v followed by
quicksort(Sy)}

