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Mathematical Induction 
• of no use for deriving formulas 
• a good way to prove the validity of a formula that you might 

think is true 
• never confuse MI with Inductive Attitude in Science. The latter 

is just a process of establishing general principles from 
particular cases. 

• Statements proven by math induction all depend on an integer 
Assume you want to prove that for some statement P, P(n) is true 
for all n starting with n = 1. The Principle (or Axiom) of Math 
Induction states that for this purpose you should accomplish just 
two steps: 

1. Prove that P(1) is true.  
2. Assume that P(k) is true for some k. Derive from here 

that P(k+1) is also true.  
• Often it's impractical to start with n = 1. MI applies with any 

integer n0. The result is then proven for all n starting with n0.  
• Sometimes, instead of 2., one assumes 2': 

Assume that P(m) is true for all m < (k+1).  
Derive from here that P(k+1) is also true.  
The two approaches are equivalent. 

Suppose you want to prove a theorem in the form  
"For all integers n greater than equal to a, P(n) is true" 
• P(n) must be an assertion that we wish to be true for all n = a, 

a+1, ...; like a formula 
• First, verify the initial step →→  verify that P(a) is true 
• inductive step 

o prove  
"If there is a k, greater than or equal to a, for which P(k) 
is true,  
then for this same k, P(k+1) is true." 

Big-Oh notation 

• To establish a relative order among function 
• Compare relative rates of growth 
Big-Oh notation 
• efficiency indicator 
• instead of saying “order…,” one says “Big-Oh…” 
• is used to compare two functions 
• Typically, one function, which we'll call T(N), models the cost 

of an algorithm using some cost metric. The other, which we'll 
call f(N), gives an upper-bound on T(N). 

• Interestingly, O(f(N)) is a set of functions, since f(N) is 
typically an upper bound on many different functions. 

o This is why we have said ``T(N) is in O(f(N))'' rather 
than ``T(N) is O(f(N))''. 

• want to ignore constant multipliers 
• Want to include the ``for sufficiently large N'' in our formal 

definition, since we've seen that the higher-order terms only 
dominate when N is large enough. 

• describes an upper bound on the running time of an algorithm.  
• However, this bound need not be tight, nor does it tell us about 

lower bounds. 
Definition 
• T(N) = O( f(N) ) if 

there are positive constants c and n0 such that 
T(N) ≤ c f(N) when N ≥ n0 . 

Note on the definition 
• The c in this definition is used to account for constant 

multipliers.  
o Since we can choose the multiplier for f(N), it doesn't 

matter what multipliers we have for T(N), we can just 
choose a bigger one.  

• The n0 in this definition is used for ``sufficiently large''.  
o We choose an n0 large enough that the dominating term 

actually dominates. 



Interpretation 
• eventually, there is some point n0  

past which c f(N) is always at least as large as T(N) 
• the growth rate of T(N) is ≤ to that of f(N) 
• f(N) is an upper bound on T(N) 
• f(N) = Ω( T(N) ) → T(N) is a lower bound on f(N) 
Big-O allows us to ignore constant multipliers 

⇒  
if f(N) is in O(C*g(N)), 
then f(N) is in O(g(N)) for all positive C 

proof 
1. If f(N) is in O(C*g(N)),  

then there exist M1 and D1 > 0 such that  
for all N > M1,  
|f(N)| ≤ |D1*C*g(N)|. [By the definition of Big-O.] 

2. Let M2 = M1. 
3. Let D2 = |D1*C|. 
4. For all N > M2, |f(N)| ≤ |D1*C*g(N)|. [By step 1 and definition of M2.] 
5. For all N > M2, |f(N)| ≤ |D2*g(N)|. [By definition of D2.] 
6. f(N) is in O(g(N)). [By definition of Big-O.] 

 
Big-O allows us to ignore lower order terms 

⇒ 
if  

f(N) is in O(g(N) + h(N)) and 
g(N) is in O(h(N)) 

then  
f(N) is in O(h(N)). 

proof 
1. If f(N) is in O(g(N) + h(N)),  

then there exist M1 and D1 > 0  
such that for all N greater than M1,  
|f(N)| ≤ |D1*( g(N) + h(N) )|.  
[By the definition of Big-O.]  

2. If g(N) is in O(h(N)),  
then there exist M2 and D2 > 0  
such that for all N greater than M2,  
|g(N)| ≤ |D2*h(N)|.  

3. Let M3 = max(M1,M2).  
⇒ N>M3 is {N > M1 and N > M2} 

For all N > M3,  
4. |f(N)| ≤ |D1*(g(N) + h(N))|.  

[By step 1 and definition of M3.]  
5. |f(N)| ≤ D1*|g(N)+h(N)|.  

[If D>0, then |D*X| = |D|*|X|.]  
6. |f(N)| ≤ D1*|g(N)| + D1*|h(N)|.  

[|X+Y| ≤ |X|*|Y|.]  
7. |f(N)| ≤ D1*|D2*h(N)| + D1*|h(N)|.  

[By step 2 and definition of M3.]  
8. |f(N)| ≤ |(D1*D2+D1)*h(N)|.  

[Various arithmetical manipulations; D1 > 0.]  
9. Let D3 = D1 * (1 + D2).  
10. |f(N)| ≤ |D3*h(N)|.  

[Definition of D3.]  
11. f(N) is in O(h(N)).  

[Definition of Big-O.]  
Big-O is transitive 

if  
f(N) is in O(g(N)) and 
g(N) is in O(h(N)) 

then f(N) is in O(h(N)) 



proof 
1. Because f(N) is in O(g(N)),  

there exist M1 and D1 such that  
for all N > M1,  
|f(N)| ≤ |D1*g(N)|.  

2. Because g(N) is in O(h(N)),  
there exist M2 and D2  
such that for all N > M2,  
|g(N)| ≤ |D2*h(N)|.  

3. Let M3 = max(M1, M2).  
Then for all N > M3,  
4. |f(N)| ≤ |D1*g(N)|.  

[By the first rule and the definition of M3.] 
5. and 

|g(N)| ≤ |D2*h(N)|.  
[By the second rule and the definition of M3.]  

6. Then  
|D1*g(N)| ≤ |D1*D2*h(N)|.  
[Since D1 > 0, we can safely multiply both sides of an inequality for D1 without affecting the 
inequality.]  

7. |f(N)| ≤ |D1*D2*h(N)|.  
[We can plug together various inequalities using transitivity of inequality.]  

8. Let D3 = max(1,D1) * max(1,D2). 
9. |f(N)| ≤ |D3*h(N)|.  

[D3 ≥ D1*D2.]  
10. Hence f(N) is in O(h(N)).  

[By the definition of Big-O.]  
Rule 
• If  

T1(N) = O( f(N) ) and 
T2(N) = O( g(N) ), 

then 
o T1(N) + T2(N) = max( O( f(N) ),  O( g(N) ) ) 
o T1(N) * T2(N) = O( f(N) * g(N) ) 

• logk N = O(N) for any constant k. 
⇒ logarithms grow very slowly 

Include negative N 
• to incorporate possibly negative results, we'll use absolute 

value when we formalize Big-O. 
• T(N) is an element of O(f(N)) if and only if  

there exist constants c and n0 such that for all N > n0,  
|T(N)| ≤ |c*f(N)|. 

The function g(N) is a tight upper bound on f(N) if  
1. f(N) is in O(g(N)) and  
2. for all h(N) such that  

f(N) is in O(h(N)),  
g(N) is also in O(h(N)).  

style:  
• Don’t include constants or low-order terms inside a Big-Oh 
• Bad to say f(N) ≤ O( g(N) ) 

because the inequality is implied by the definition 
• Wrong to write f(N) ≥ O( g(N) ) 

→ does not make sense 
• The running time of a for loop is at most  

the running time of the statements inside the for loop 
(including tests)  

times 
number of iterations. 

• Nested loop → Analyze these inside out. 
• Consecutive statement → just add → the maximum is the one 

that counts 
• if(condition) 

S1 
else 

S2 
the running time of an if/else statement is never more than 
the running time of the test +  

the larger of the running times of S1 and S2 
• can be an overestimate, but never an underestimate 

 



• An algorithm is O(log N) if  
it takes  constant (O(1)) times to cut the problem size by a 

fraction (which is usually 
2
1

) 

• An algorithm is O(N) if 
constant time is required to reduce the problem by a constant 
amount 

• O(logaN) = O(log N) 
• all the loga(N) are big-O of each others. 
loop → ∑ 
• for(int i = 0; i<n; i++) 
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To analyze recursion 
• assume the running time is T(N) 
• write out the equation from the recursion relation from the 

definiton of the method in terms of T(k) where k < N, constant, 
and function of N 

• a commonly used trick to verify that some program is O(f(N)): 
T(N) = empirically observed running time 

compute the value 
)(
)(

Nf
NT

 for a range of N  

(usually spaced out by factors of 2) 
o converge to a positive constant → tight answer 
o converge to 0 → overestimate 
o converge to ∞ → underestimate → wrong 

Typical growth rates 
Function Name  
1  • retrieval of a single data item from an array, when 

you know where the data item is 

c constant  

log N logarithmic • the NCAA basketball tournament 
• average and worse-case efficiency of a binary search 

log2 N log-
squared 

 

N linear • average and worse-case efficiency of performing a 
sequential search for a data item in an array 

N log N  • average efficiency of performing a mergesort or a 
quicksort on an array 

• space require for writing n number (each number take 
log N length text to denote it value) 

• space require for keeping N data in a list (take log N 
to store the link that differentiate all N data) 

N2  quadratic • average and worse-case efficiency of  bubblesort or 
selection sort 

• worse-case efficiency of a quicksort 

N3  cubic  

2N exponential • Tower of Hanois 

n!  • combinatoric problems  
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• Omega: T(N) = ΩΩ( g(N) ) if 
there are positive constants c and n0 such that 

T(N) ≥ c g(N) when N ≥ n0 . 
⇒ the growth rate of T(N) is ≥ that of g(N) 

• Theta: T(N) = ΘΘ( h(N) ) if and only if 
T(N) = O( h(N) ) and  
T(N) = Ω( h(N) ) 

⇒ the growth rate of T(N) is = that of h(N) 
o If T(N) is a polynomial of degree k, 

then T(N) = Θ( Nk ) 
• Little-oh: T(N) = o( p(N) ) if 

T(N) = O( p(N) ) and 
T(N) ≠ Θ( p(N) ) 

⇒ the growth rate of T(N) is < that of p(N) 
Recursion 
• a function that is defined in terms of itself is called recursive 
• base case → the value for which the function is directly known 

without resorting to recursion 
• should never be used as a substitute for a simple for loop 
Thing to keep in mind 
• Base case → Must always have some base cases, which can be 

solved without recursion 
• Making progress → For the case that are to be solved 

recursively, the recursive call must always be to a case that 
makes progress toward a base case 

• Design rule → Assume that all the recursive calls work 
• Compound interest rule → Never duplicate work by solving 

the same instance of a problem in a separate recursive call 
o Don’t compute anything more than once 

Proof by Induction Recursion 

• Define some measure of the 
problem "N" 

• BASE CASE: Prove the 
theorem holds for some base 
case (N=0 or N=1) 

• EXTENSION CASE: 
Assume we have proven the 
theorem for the "K-th" case, 
show the proof holds for the 
"K+1-st" case.  (the 
immediate problem) 

• Since we want a proof for 
any N, you can stop here (at 
N=K, since K is any value 
anyway). 

• Define some measure of the 
problem "N" 

• BASE CASE: Solve the 
problem for a base case 

• EXTENSION CASE: 
Assume you can solve the 
problem for the "K-th" case 
by calling yourself 
recursively for problem of 
size "K", using solution 
returned, solve the problem 
for the "K+1-st" case in this 
immediate step. 

• Stop when K=N or (if 
working backwards from N, 
when K=the base case). 

• tail recursion → a recursive call at the last line 
• can be machanically eliminated by enclosing the body in a 

while loop and replacing the recursive call with an assignment 
per method argument (some compilers do it automatically) 

• recursion can always be completely removed 
• compilers do so in converting to assembly language 
although nonrecursive programs are certainly generally faster than 
recursive programs, the speed advantage rarely justifies the lack of 
clarity that results from removing the recursion. 
 
Abstract Data Types (ADTs) 
⇒ a set of objects together with a set of operations 
List 
Simple Array Implementation of lists 
o insertion/deletion → O(N) 
o building a list by successive insert → O(N2) 
Linked lists 



• space require for keeping N links to N data → O(N log N) 
size of each address is O( log N ) → to differentiate all N data 

• access ith object, starting from head → O(i) 
access all object in the list →O(n2) 

• keep track of the last element → access all object in the list 
→O(n) 

Iterator 
• using a separate iterator class express the abstraction that the 

position and list are really separate objects. 
• allows for a list to be accessed in several places simultaneously 
class DataHolder //node 
{ 
 Object ob; 
 DataHolder next; 
 DataHolder(Object ob) 
 { 
  //choose whether to make a copy  

//or use the reference 
  this.ob = ob; 
  next = null; 
 } 
} 

public class LinkedList 
{ 
 DataHolder first,last; 
 LinkedList() 
 { 
  first = null; 
  last = null; 
 } 
 void addToEnd(Object ob) 
 { 
  DataHolder dh = new DataHolder(ob); 
  //the list is empty 
  if(first==null) 
  { 
   first = last = dh; 
  } 
  //this list is not empty 
  else 
  { 
   last.next = dh; 
   last = dh; 
  } 
 } 
 void insert(Object ob, int place) 
 { 
  //insert to be the first element 
  if(place==0) 
  { 
   DataHolder dh = new DataHolder(ob); 
   dh.next = first; 
   first = dh; 
  } 
  else 
  { 
   //think of inserting at n as  

//inserting at after n-1 
   DataHolder precede = at(place-1);  

//position n-1 
   if(precede==null){/*error*/} 
   DataHolder dh = new DataHolder(ob); 
   dh.next = precede.next; 
   precede.next = dh; 
  } 
 }  



DataHolder at(int n) 
 { 
  DataHolder finger = first; 
  if(first==null) return null; //empty list 
  while(n>0) 
  { 
   //too big n 

if(finger.next == null) return null;  
   finger = finger.next; 
   n--; 
  } 
  return finger; 
 } 
 Object objectAt(int n) 
 { 
  DataHolder dh = at(n); 
  if(dh==null) return null; 
  return dh.ob; 
 } 

void traverse() //O(n2) 
 { 
  int i = 0; 
  String s = (String)objectAt(i); 
  while(s!=null) 
  { 
   System.out.print(s + " "); 
   i++; 
   s =  (String)objectAt(i); //O(n) 
  } 
  System.out.print("\n"); 
 } 

void traverseF() //O(n) 
 { 
  DataHolder finger = first; 
  while(finger!=null) 
  { 
   System.out.print((String)finger.ob + " "); 
   finger=finger.next; 
  } //violate encapsulation 
  System.out.print("\n"); 
 } 
 
 

 void traverseI() //O(n) 
 { 
  LLIterator li = new LLIterator(this); 
  while(li.hasNext()) 
  { 
   System.out.print((String)li.getNext().ob+ " 
"); 
  } 
  System.out.print("\n"); 
 } 
} 
class LLIterator 
{ 
 //the one you will return  

//when using the getNext call 
 DataHolder current; 
 LLIterator(LinkedList LL) 
 { 
  current = LL.first; 
 } 
 boolean hasNext() 
 { 
  return(current!=null); 
 } 
 DataHolder getNext() 
 { 
  DataHolder ans = current; 
  if(current!=null) 
   current=current.next; 
  return ans; 
 } 
} 
Other 
• Doubly linked list 
• Circular linked list 



Stack 
• LIFO (last in, first out) lists 
• inserts and deletes can be performed in only one position, 

namely the end of the list called the top.  
• The fundamental operations on a stack are  

o push ⇒ insert, and  
o pop ⇒ deletes the most recently inserted element.  
o The most recently inserted element can be examined 

prior to performing a pop by use of the top routine.  
• A pop or top on an empty stack is generally considered an error 

in the stack ADT.  
• running out of space when performing a push is an 

implementation error but not an ADT error. 
• both the linked list and array implementations gives fast O(1) 

running times for every operation 
Balancing parentheses 
• For simplicity, we will just check for balancing of parentheses, 

brackets, and braces and ignore any other character that 
appears. 

• Make an empty stack. 
• Read characters until end of file. 
• If the character is an open anything, push it onto the stack. 
• If it is a close anything, then  

o if the stack is empty report an error.  
o Otherwise, pop the stack.  

§ If the symbol popped is not the corresponding 
opening symbol, then report an error.  

• At end of file, if the stack is not empty report an error. 
Postfix Expressions 
•  postfix or reverse Polish notation 
• there is no need to know any precedence rules 
• When a number is seen, it is pushed onto the stack;  
• when an operator is seen, the operator is applied to the two 

numbers (symbols) that are popped from the stack and the 
result is pushed onto the stack.  

• The time to evaluate a postfix expression is O(n) 
Infix to Postfix Conversion 
• concentrate on a small version of the general problem by 

allowing only the operators +, *, and (, ), and insisting on the 
usual precedence rules. 

• assume that the expression is legal 
• start with an initially empty stack. 
• When an operand is read, it is immediately placed onto the 

output. 
• place operators that have been seen onto the stack 
• stack left parentheses when they are encountered. 
• If we see a right parenthesis, then we pop the stack, writing 

symbols until we encounter a (corresponding) left parenthesis, 
which is popped but not output. 

• If we see any other symbol ('+','*', '(' ), then we pop entries 
from the stack until we find an entry of lower priority. 

o Exception: never remove a '(' from the stack except 
when processing a ')' 

o When the popping is done, we push the symbol onto 
the stack. 

• Finally, if we read the end of input, we pop the stack until it is 
empty, writing symbols onto the output. 

Queue 
• is list 
• insertion is done at one end, whereas deletion is performed at 

the other end 
• both the linked list and array implementations gives fast O(1) 

running times for every operation 
basic operations on a queue are  
• enqueue ⇒ inserts an element at the end of the list (called the 

rear), 
• dequeue ⇒ deletes (and returns) the element at the start of the 

list (known as the front). 
 
Tree 



• is a collection of nodes 
• consists of  

o a distinguished node r → the root, and  
o zero or more (sub)trees T1, T2, . . . , Tk,  

each of whose roots are connected by a directed edge to 
r  

• The collection can be empty, which is sometimes denoted as A 
• The root of each subtree → a child of r, and  

r → parent of each subtree root.  
• Each node may have an arbitrary number of children, possibly 

zero.  
• Nodes with no children → leaves 
• Nodes with the same parent → siblings 
• grandparent  
• grandchild 
• A path from node n1 to nk is defined as a sequence of nodes n1, 

n2, . . . , nk such that ni is the parent of ni+1 for 1  i < k.  
• The length of this path is the number of edges on the path, 

namely k -1.  
• There is a path of length zero from every node to itself.  
• in a tree there is exactly one path from the root to each node 
• the depth of node ni is the length of the unique path from the 

root to ni.  
• the root is at depth 0.  
• The height of node ni is the longest path from ni to a leaf.  
• all leaves are at height 0.  
• The height of a tree = the height of the root. 
• If there is a path from n1 to n2, then n1 is an ancestor of n2 and 

n2 is a descendant of n1. 
o If n1 n2, then 

§ n1 is a proper ancestor of n2 
§ n2 is a proper descendant of n1 

• running time of most operations is O(log n) on average 
• a tree is a collection of n nodes, one of which is the root, and n 

- 1 edges.  
o That there are n - 1 edges follows from the fact that 

each edge connects some node to its parent, and every 
node except the root has one parent 

• generally drawn as circles connected by lines (because they are 
actually graph) 

• do no explicitly draw null links 
• One natural way to define a tree is recursively 
Implementation 
• to have in each node, besides its data, a pointer to each child of 

the node.  
• since the number of children per node can vary so greatly and 

is not known in advance, it might be infeasible to make the 
children direct links in the data structure, because there would 
be too much wasted space.  

• solution → keep the children of each node in a linked list of 
tree nodes. 

class TreeNode 
{ 

Object element; 
TreeNode firstChild; 
TreeNode nextSibling; 

} 
Binary Trees 
• no node can have more than 2 children 
• N nodes have N+1 null links 

2N – N + 1(root) 
•  



Expression trees 
• leaves nodes contain operands 
• other nodes contain operators. 
• To evaluate → applying the operator at the root to the values 

obtained by recursively evaluating the left and right subtrees 
• inorder traversal (left node right) 
• postorder traversal (left right node) 
• preorder traversal (node left right) 
• constructing an expression tree from postfix string 

o read expression 1 symbol at a time 
o if symbol is an operand → create one-node tree and push it 

onto stack 
o if symbol is an operator → pop 2 trees T1 and T2 from the 

stack (T1 is popped first) and form a new tree whose root is 
the operator and whose left and right children are T2 and 
T1.  This new tree is then pushed onto the stack. 

class BinaryTree 
{ 

String data; 
BinaryTree left,right; 
BinaryTree(String d, BinaryTree l, BinaryTree r) 
{ 

data = d; 
left = l; 
right = r; 

} 
BinaryTree(String d) 
{ 

this(d,null,null); 
} 

} 

class ArTree extends BinaryTree 
{ 

int evaluate() 
{ 

if(left==null && right==null) 
return Integer.parseInt(data); 

if(data.equals(“+”) 
return left.evaluate()+right.evaluate(); 

if(data.equals(“*”) 
return left.evaluate()*right.evaluate(); 

} 
 

String infixString() 
{ 

if(left==null && right==null) 
{ 

return data; 
} 
return “(“ + left.infixString() + data + 

right.infixString() + “)”; 
} 
String postfixString() 
{ 

if(left==null && right==null) 
{ 

return data; 
} 
return  left.postfixString() + 

right.postfixString() + data; 
} 

} 
constructing an expression tree from infix string 
o Depth of an operator in terms of parens can be found by using 

stack, depth is the number of “(“ ’s that are found in the stack 
when encounter the operator. 



{ 
Boolean isANumber(); 
Boolean isParenthesized(); 
Boolean isCompound(); 
void deParenthesized(); 
//if there is a +,- otherwise *,/ at level 0  
//(surrounded by 0 parens)  
//take the first(last?) one 
String getOperator(); 
String getLeftExp(); 
String getRightExp(); 
void buildTree() 
{ 

if(isParenthesized()) 
deParenthesized(); 

if(isANumber()) 
return; 

if(isCompound()) 
{ 

String op = getOperator(); 
String leftString = getLeftExp(); 
String rightString = getRightExp(); 
data = op; 
left = new BinaryTree(leftString); 
right = new BinaryTree(rightString); 
left.buildTree(); 
right.buildTree(); 

} 
} 

} 

Tree traversal 
• preorder: node, children(in order) 
• inorder: 1st child, node, other children 
• postorder: children(in order), node 
Analyzing game using tree 
• tree may log the same state multiple times 

Consider the game: 
• Set value for each node with respect to player x 
• win = 1, draw = 0, lose = -1 
• If work by hand → go from deepest level up (the value at 

leaves is known) 
• If work recursively → 

o at leaves (the end of the game), return the value of the 
node 

o at node followed by the edge of player X’s move → 
return the max value of children nodes 
→ equivalent to choosing the best move for player X 

o at node followed by the edge the is not of player X’s 
move → return the min value of children nodes 
→ equivalent to choosing the worst move for player X 

• Graph 
o can have multiple pathways to a state 
o if can afford to ignore history, we can make a smaller 

graph by only recording state and transition. 
Binary search tree 
• depends on 

o data and 
o order of insertion 

• worst case for the depth is when the data are already sorted. 
• average depth: O(log n) 
• worst case building: O(n2) 
• average building: O(n)×O(d) = O(n log n) 
Properties 
• for every node, X, in the tree,  

o the values of all the items in the left sub-tree are smaller 
than the item in X, and  

o the values of all the items in the right sub-tree are larger 
than the item in X. 

→ make a binary tree into a binary search tree 



class BinaryTree 
{ 

Comparable data; 
BinaryTree left,right; 
BinaryTree(String d, BinaryTree l, BinaryTree r) 
{ 

data = d; 
left = l; 
right = r; 

} 
BinaryTree(Comparable d) 
{ 

this(d,null,null); 
} 
BinaryTree() 
{ 

this(null,null,null); 
} 

Insertion 
• if at an empty node → insert 
• otherwise recursively insert into 

o left sub-tree if less than current value 
o right sub-tree if greater than current value 

• worst case : O(n2) 
void insert(Comparable x) 
{ 

if(data==null) 
{ 

data = x; 
} 
else if(x.compareTo(data)<0) 
{ 

if(left==null) left=new BinaryTree(x); 
else left.insert(x); 

} 
else if(x.compareTo(t.data) > 0) 
{ 

if(right==null) right=new BinaryTree(x); 
else right.insert(x); 

} 
else  

doSomething(); //Match 
} 

Find 
Comparable find(Comparable x) 
{ 

if(x.compareTo(data)<0) 
{ 

if(left==null) return null; 
return left.find(x); 

} 
else if(x.compareTo(t.data) > 0) 
{ 

if(right==null) return null; 
return right.find(x); 

} 
else 

return data; //Match 
} 

• crutial that the test for an empty tree be performed first, since 
otherwise, we would generate a NullPointerException 
attempting to access a data field through a null reference. 

• both recursive calls are actually tail recursions 
o can be easily removed with a while loop. 
Comparable findMin() 
{ 

if(left==null) return data; 
return left.findMin(); 

} 
Comparable findMax() 
{ 

BinaryTree temp = this; 
while(right!=null) 
{ 

temp = temp.right; 
} 
return temp.data; 

} 



Deletion 
• a leaf → just delete it 
• a node with a single child → can be deleted after its parent 

adjusts a link to bypass the node 
• a node with 2 children → replace the data of this node with the 

smallest data of the right subtree (which is easily found) and 
recursively delete that node. 
void delete(Comparable x) 
{ 

if(x.compareTo(data)<0) 
{ 

if(left==null)  
{ 

//no x in this tree 
return; 

} 
else left.delete(x);  

} 
else if(x.compareTo(data)>0) 
{ 

if(right==null)  
{ 

//no x in this tree 
return; 

} 
else left.delete(x); 

} 
else 
{ 

//x is in this node 

if(left==null && right==null)  
//this is a leaf, just delete it 
{ 

this = null; 
} 
// Nodes that has only one child  
//(left or right) 
else if(left!=null && right==null) 
{ 

this = this.left; 
} 
else if(left==null && right!=null) 
{ 

this = this.right; 
} 
else //have left and right children 
{ 

data = right.findMin(); 
right.delete(data); 
//this node cannot have left child 
//so it won’t fall into this case again 

} 
} 
return; 

} 
} 
• To get the data out in sorted order → traverse in inorder 
• The running time of all the operations is O(depth) 

depth = depth of the node containing the accessed item 

• after O(n2) #insertions=#deletions , depth is ( )nO  



independent method for binary search tree 
public static int binarySearch( Comparable [a],  

Comparable x) 
{ 

int low = 0; 
int high = a.length–1; 
 
while(low <= high) 
{ 

int mid = (low+high) / 2; 
//if the middle is less than x, 
//change to consider only the right half 
if( a[mid].compareTo(x) < 0 ) 

low = mid+1; 
//if the middle is more than x, 
//change to consider only the left half 
else if( a[mid].compareTo(x) > 0 ) 

high = mid-1; 
else 

return mid; //found 
} 
return NOT_FOUND; 

} 
AVL Trees 
(Adelson-Velskii and Landis) 
• a binary search tree with a balance condition 
• depth of the tree is O(log N) 
• for every node in the tree, the height of the left and right 

subtrees can differ by at most 1 
• the height of an empty tree is defined to be -1 
Binary Heap 
⇒ a binary tree that is completely filled, with the possible 
exception of the bottom level, which is filled from left to right 
• implement Priority Queues (Heaps) 
• heap-order property → any node is smaller than all of its 

descendants 
• the minimum element can always be found at the root 

findMin() → O(1) 

complete binary tree 
• the height of a complete binary tree is  Nlog  = O(log N) 

o can be represented in an array and no links are 
necessary 

o no element in array[0] 
o for any element in array position i 

§ left child = array[2*i] 
§ right child = array[2*i+1] 

§ parent = array 












2
i

 

o estimate of the maximum heap size is required in 
advance 

insert x 
percolate up 
• create a hole in the next available location 
• if x can be placed in the hole without violating heap order, then 

we do so and are done. 
• otherwise, slide the element that is in the hold’s parent node 

into the hole, thus bubbling the hole up toward the root 
• continue this process until x can be placed in the hole 

void insert(Comparable x) //O(log N) 
{ 

int hole = ++currentSize(); 
for(;hole > 1 &&x.compareTo(array[hole/2])<0;  

hole /= 2) 
{ 

//get value from its parent 
array[hole]=array[hole/2]; 

} 
array[hole] = x; 

} 

• sentinel: small value in position 0 inorder to make the loop 
terminate 

o must be guaranteed to be ≤ any element in the heap 



deleteMin 
• create a hole at the root 
• store the last element X 
• if X can be placed in the hole, done 
• otherwise, slide the smaller of the children into the hole, thus 

pushing the hole down one level 
• repeat until X can be placed in the hole 

void deleteMin() //O(log N) 
{ 

int hole = 1; //the root 
 
array[hole] = array[ currentSize-- ]; 
 
//percolate down 
 
int child; 
Comparable temp = array[hole]; 
for(;hole*2 <= currentSize; hole=child) 
{ 

child=hole*2; //left child 
//if right child is less than left child,  
//use right child 
if(child!=currentSize && 

array[child+1].compareTo(array[child])<0) 
{ 

child++; 
} 
if(array[child].compareTo(tmp)<0) 
{ 

array[hole]=array[child]; //move child up 
} 
else 

break; 
} 
array[hole] = temp; 

} 

• can buildHeap() with N successive inserts → O(log N)*O(N) 
= O(N log N) 

• finding the kth smallest element: perform k deleteMin operation 
→ O(buildHeap) + O(k log N) 

•  

 
Graph 
G = (V,E) 
• V = set of vertices 
• E = set of edges  
• |E| = O(|V|2) (can be a lot less than this) 
• edge = arcs = a pair (v,w) where v,w ∈ V 

• if the pair is ordered, the graph is directed → digraph 
• optional component: weight/cost 

• vertex w is adjacent to v if and only if (v,w) ∈ E 
• path = sequence of vertices w1,…,wN such that (wi,wi+1) ∈ E 

for 1 ≤ i < N. 
o length = number of edges on the path = N-1 
o allow path from vertex to itself 

§ if this path contains no edges, the path 
length = 0 

o simple path → all vertices are distinct, except that 
the first and the last could be the same 

• cycle  
o in a directed graph → path of length at least 1 such 

that w1 = wM  
o in undirected graph → distinct edges 

• DAG: directed acyclic graph → directed graph with no cycle 



• connected  undirected graph → there is a path from every 
vertex to every other vertex 

• strongly connected directed graph → there is a path from 
every vertex to every other vertex 

• weakly connected directed graph → the underlying graph 
(without direction to the arcs) is connected 

• complete graph → there is an edge between every pair of 
vertices 

• indegree of a vertex v → #edges (u,v) 
• weighted graph → associated with each edge (vi,vj) is a cost 

ci,j to traverse the edge 

• weigthed path length → the cost of a path v1…vN = ∑
−

=
+

1

1
1,

N

i
iic  

• unweighted path length → the number of edges on the path = 
N-1 

• diameter ( ){ }wvdist
Vwv
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Representation of a graph 
• adjacency matrix → use 2-d array 

o space: O(|V|2) 
o appropriate if the graph is dense: |E| = Θ(|V|2)  

• adjacency list  
o the standard way to represent graphs 
o space: O(|E|+|V|) 

Topological sort 
⇒ an ordering of vertices in a directed acyclic graph, such that  
if there is a path from vi to vj, then vj appears after vi in the 
ordering 
• not possible if the graph has a cycle 
• find any vertex with no incoming edges, print it and remove it 

along with its edge 
• apply this same strategy to the rest of the graph 

void topsort() throws CycleFound //O(|V|2) 
{ 

Vertex v, w; 
 
for(int counter=0; counter<|V|; counter++) 
{ 

//look for a vertex with indegree 0  
//that has already been assigned topNum 
v = findNewVertexOfDegreeZero(); //O(|V|) 
if(v=null) 

throw new CycleFound(); 
v.topNum = counter; 
for each w adjacent to v 

w.indegree--; 
} 

} 
unweighted shortest-path 
Given an unweighted graph G. Using some vertex, s, which is am 
input parameter, find the shortest path from s to all other vertices 
• consider only the #edges contained on the path 
• no weights on the edge 
• special case of weighted shortest-path problem, could assign all 

edges a weight of 1. 
• breadth-first search 
• look for all vertices that are at distance 1 away from s → 

vertices that are adjacent to s 
•  

void reset() 
 { 
  currMaxDist = 0; 
  for(int i=0;i<vertex.size();i++) 
  { 
   Vertex v = vertex.At(i); 
   v.known = false; 
   v.dist = INF; 
   v.via = null; 
  } 
 } 



void AssignDist(int base) //O(|V|2) 
 { 
  Vertex v, w; 
  vertex.At(base).dist = 0; 
  for(int currDist=0; currDist < vertex.size(); currDist++) 
  { 
   for(int i = 0; i<vertex.size();i++) 
   { 
    v = vertex.At(i); 
    if(!v.known && v.dist==currDist) 
    { 
     v.known = true; 
     List adjList = edge.elementAt(i); 

//for each w adjacent to v 
     for(int j =0; j<adjList.size();j++) 
     { 
      w = adjList.At(j); 
      if(w.dist==Vertex.INF) 
      { 
       w.dist = currDist+1; 

w.path = v; 
       currMaxDist=currDist+1; 
      } 
     } 
    } 
   } 
  } 
 } 

 void AssignDist(int base) 
 { 
  Vertex v, w; 
  vertex.At(base).dist = 0; 
  vertex.At(base).known = true; 
  boolean allKnown = false; 
  while(!allKnown) 
  { 
   allKnown = true; 
   for(int i = 0; i<vertex.size();i++) 
   { 
    v = vertex.At(i); 
    if(v.known) 
    { 
     List adjList = edge.At(i); 
     for(int j =0; j<adjList.size();j++) 
     { 
      w = adjList.At(j); 
      if(!w.known) 
      { 
       w.dist = v.dist+1; 
       w.known = true; 
       currMaxDist=w.dist; 
      } 
     } 
    } 
    else{allKnown = false;} 
   } 
  } 
 } 

single-source shortest path problem 
Given as input a weighted graph, G=(V,E), and a distinguished 
vertex, s, find the shortest weighted path from s to every other 
vertex in G 
• no edge of negative cost → the shortest path between two 

points is undefned 
• negative cost cycle → when one is present in the graph, the 

shortest path are not defined 
• the shortest path from s to s is 0 
• currently, there are no algorithms in which finding the path 

from s to one vertex is any faster (by more than a constant 
factor) than finding the path from s to all vertices 



Initialization 
• all vertex.known = false 
• all vertex.via = null 
• all vertex.dist = ∞  
set basePoint.dist = 0; 
Dijkstra’s algorithm 
• solve the single-source shortest-path problem 
• for weighted graph 
• for unweighted graph, assign all weight to be 1 
• works with directed or undirected graph 
• greedy algorithm → generally solve a problem in stages by 

doing what appears to be the best thing at each stage 
o do not always work 

• dv = the shortest path length from s to v using only known 
vertices as intermediates 

• pv = the last vertex to cause a change to dv  
v known dist  pv  
     

while(not all known) 
{ 

find unknown with min dist v 
mark it known 
find all adjacent vertices 
for each unknown adjacent vertices w 
{ 

if(v.dist + weight of edge (v,w) < w.dist ) 
{ 

update dis w 
set w.via = v 

} 
} 

} 

 void dijkstra(int base) 
 { 
  reset(); 
  Vertex v,w; 
  vertex.At(base).dist = 0; 
  for(;;) 
  { 
   //v = the smallest unknown distance vertex 
   int minUnknownV = noV;  

//this will get changed  
//if unknown vertex(s) is found 

   int minUnknownValue = Vertex.INF; 
   for(int i=0;i<vertex.size();i++) 
   { 
    Vertex p = vertex.At(i); 
    if(!p.known) 
    { 
     if(p.dist < minUnknownValue ) 
     { 
      minUnknownValue = p.dist; 
      minUnknownV = i; 
     } 
    } 
   } 

//minUnknownV is still nopath  
//→ no unknown vertex → done 

   if(minUnknownV == noV) 
    break; 

 
   v = vertex.At(minUnknownV); 
   v.known = true; 
   List adjList = edge.At(minUnknownV); 

//for each unknown w adjacent to v 
   for(int i=0; i<adjList.size(); i++) 
   { 
    w = adjList.At(i)); 
    if(!w.known) 
    { 
     int d = distance(v,w); 
     if(v.dist + d < w.dist) 
     { 
      w.dist = v.dist + d; 
      w.via = v; 
     } 
    } 
   }     
  } 

} 



void printPath(Vertex v) 
{ 

if(v.path != null) 
{ 

printPath(v.path); 
System.out.print(“ to “); 

} 
System.out.print( v ); 

} 

• always works as long as no edge has a negative cost 
• running time 

• if scanning down array to find minimum dv 
each stage use O(|V|) 
have to run this O(|V|) 
so, use O(|V|2) to find minimum in this code 
the update is O(|E|) 
so running time: O(|E|+|V|2) = O(|V|2) 

• to date, there are no meaningful average-case results for 
this problem 

Example 
0 → 1(10), 2(1) 
1 → 0(10),3(1) 
2→ 0(1), 3(1) 
3 → 2(1),1(1) 

0 0 F null 
1 ∞  F null 
2 ∞ F null 
3 ∞ F null 

• unknown with min dist = 0 
0 0 T null 
1 ∞  F null 
2 ∞ F null 
3 ∞ F null 

• 0 is connected to 1,2 both unknown 
• for 1: 0+10 < ∞ 

0 0 T null 
1 10  F 0 
2 ∞ F null 
3 ∞ F null 

• for 2: 0+1 < ∞  
0 0 T null 
1 10  F 0 
2 1 F 0 
3 ∞ F null  
not all known 
• unknown with min dist = 2 
0 0 T null 
1 10  F 0 
2 1 T 0 
3 ∞ F null 

• 2 is connected to 0,3 only 3 is unknown 
• for 3: 1+1 = 2 < ∞  

0 0 T null 
1 10  F 0 
2 1 T 0 
3 2 F 2  



not all known 
• unknown with min dist = 3 
0 0 T null 
1 10  F 0 
2 1 T 0 
3 2 T 2 

• 3 is connected to 2,1 only 1 is unknown 
• for 1: 2+1 = 3 < 10 

0 0 T null 
1 3  F 0 
2 1 T 0 
3 2 T 2  

not all known 
• unknown with min dist = 1 
0 0 T null 
1 10  F 0 
2 1 T 0 
3 2 T 2 

o 1 is not connected to any unknown things 
• done 

All-pair shortest path 
→ run Dijkstra |V| times → O(|V|3)  
Acyclic graphs: critical path analysis 

• dijkstra can be done in one pass 
• running time: O(|E|+|V|) 
• activity-node graph 

o node → an activity that must be performed, along with time 
it takes to complete the activity 

o edge → precedence relationship: (v,w) = activity v must be 
completed before activity w may begin 

• assume any activities that do not depend (either directly or 
indirectly) on each other can be performed in parallel by 
different servers. 

• Ans. 
o what is the earliest completion time for the project 
o which activities can be delayed, and by how long, without 

affecting the minimum completion time 
• event-node graph → 

o event → the completion of an activity and all its dependent 
activities 

o events reachable from a node v may not commence until 
after the event v is completed 

o dummy edges (weight 0) and nodes may need to be inserted 
in the case where an activity depends on several others 

• find the length of the longest path from the first event to the 
last event 

• v.E = earliest completion time @ node v 
startVertex.E = 0; 
startVertex.known = true; 
while(not all known) 
{ 

for all unknown vertices v 
{ 

if(all parents w of v are known) //w→v 
{ 

v.E = ( )vw
Edgevw

cEw ,
),(

.max +
∈

 

v.know = true 
} 

} 
} 

• v.L = the latest time that each event can finish without 
affecting the final completion time 



finalVertex.L = finalVertex.E; 
finalVertex.known = true; 
while(not all known) 
{ 

for all unknown vertices v 
{ 

if(all children w of v are known) //v→w 
{ 

v.E = ( )wv
Edgewv

cLw ,
),(

.min −
∈

 

v.know = true 
} 

} 
} 

• slack time for each edge  
= the amount of time that the completion of the corresponding 
activity can be delayed without delaying the overall completion 
slackv,w = Lw-Ev-cv,w ; v→w 
because 
v have to be reached before day Ev 

w don’t have to be reached until day Lw  
so, the time to do the edge = Lw – Ev  

• activity that has 0 slack → critical activity, must finish on 
schedule 

• critical path → (at least one for graph) consist entirely of 
zero-slack edges 

Maximum-Flow Algorithm 
• edge capacities cv,w 
• Vertex s → source; t → sink 
• through any edge (v,w), at most cv,w units of flow may pass 
• at any vertex v that is not s or t, the total flow coming in must 

equal the total flow going out 
• maximum flow problem → determine the maximum amount of 

flow that can pass from s to t 
• directed 
• acyclic is not a requirement 

• have 3 pictures at each stage 
o G : the original graph, telling capacity, never changed 
o Gf : the flow used currently 
o Gr : residual graph → how much more flow can be added 

§ residual edge  
§ each edge → 2 residual edges 

§ same direction: amount that can send more = 
capacity - currentAmount 

§ opposite direction: amount that can send back = 
current amount (but opposite direction) 
→ allow the algorithm to undo its decisions 

don’t draw 0 edges 
• at each stage, find a path from s to t in Gr → augmenting path 

• nondeterministic 
• minimum edge on this path is the amount of flow that can 

be added to every edge on the path 
• determine by  

• unweighted shortest-path algorithm 
• or modified Dijkstra to find one that allows the largest 

increase in flow 
• adjust Gf  
• recomputed Gr  

• when there is no path from s to t → done 
• if the edge capacities are rational numbers, this algorithm 

always terminates with a maximum flow 
Minimum Spanning Tree 
of an undirected graph  
⇒ a tree formed from graph edges that connected all the vertices 
of G at lowest total cost 



Spanning tree 
• exists if and only if G is connected 
• minimum |E| = |V| - 1 
• acyclic → tree 
• spanning → covers every vertex 
• if an edge e, that is not in the ST is added 

→ a cycle is created 
o removal of any edge on the cycle 

§ reinsates the spanning tree property 
§ if e has lower cost than the edge the was 

removed → cost of spanning tree is lowered  
• Add edge when a spanning tree is created 

o if edge is one of the minimum cost that avoids creation 
of a cycle 
→ cost of the resulting spanning tree cannot be 
improved 

• because any replacement edge would have cost 
at least as much as an edge already in the 
spanning tree 

Prim’s Algorithm 
• run on undirected graph 
• have to put every edge in 2 adjacency list 
• dv = the weight of the shortest edge connecting v to a known 

vertex 
• pv = the last vertex to cause a change in dv  
v known dv  pv  
     

choose any vertex to be starting point 
o dv = 0 
o pv = itself 

//the tree (of known vertex) grows by 1 every loop 
while(not all known) 
{ 

find unknown vertex v with min dist 
mark it known  
for each unknown vertex w adjacent to v 
{ 

if(cw,v < current dw) 
{ 

dw = cw,v; 
set w.via = v; 

} 
} 

} 

• At any stage in the algorithm, we find a new vertex to add to 
the tree by choosing the edge (u,v) such that the cost of (u,v) is 
the smallest among all edges where u is in the tree and v is not 

• each step adds one edge and one vertex to the tree 
• running time 

= O(|V|2) without heap → optimal for dense graphs 
= O(|E|log|V|) using binary heaps 

Kruskal’s Algorithm 
• maintains a forest → collection of trees 



public void kruskal() 
{ 

int edgesAccepted = 0; 
DisjSet s; 
PriorityQueue h; //using heap 
Vertex u,v; 
SetType uSet, vSet; 
Edge e; 
 
//create heap from weight of edges 
h = readGraphIntoHeapArray(); 
h.buildHeap(); 
 
//initially there are |V| single-node trees 
//each vertex is initially in its own set 
s = new DisjSet( NUM_VERTICES ); 
 
//terminate when enough edges are accepted 
//required |V|-1 edges 
while( edgesAccepted < NUM_VERTICES – 1 ) 
{ 

//select the edge in order of smallest weight 
e = h.deleteMin(); 
//make edge e = (u,v) 
uSet = s.find(u); 
vSet = s.find(v); 
//accept an edge if it does not cause a cycle 
if(uSet != vSet) 
{ 

//accept the edge 
edgesAccepted++; 
//adding an edge merges 2 trees into one 
s.union(uSet,vSet); 

} 
} 
//when the algorithm terminates, 
//there is only one tree → minimum spanning tree 

} 

• u and v belong to the same set  
if and only if 
they are connected in the current spanning forest 

• if u and v are in the same set, → the edge is rejected ← since 
they are already connected, adding (u,v) would form a cycle 

• worst-case running time → ( )EEO log  ← dominated by the 
heap operations 
= ( )VEO log  since |E| = O(|V|2) 

Application 
• wire a house with a minimum of cable 

 
Summary: Application of graph 
edge: distance, time, cost, capacity 
node: activity, location 
• Dijkstra 

while(not all known) 
{ 

find unknown with min dist v 
mark it known 
find all adjacent vertices 
for each unknown adjacent vertices w 
{ 

if(v.dist + weight of edge (v,w) < w.dist ) 
{ 

update dis w 
set w.via = v 

} 
} 

} 

• critical path analysis 
o edge: task , weight: time this task take 
o node: completion of edge before it 

startVertex.E = 0; 
startVertex.known = true; 
while(not all known) 
{ 

for all unknown vertices v 
{ 

if(all parents w of v are known) //w→v 
{ 

v.E = ( )vw
Edgevw

cEw ,
),(

.max +
∈

 

v.know = true 
} 

} 
} 

 
Sorting 
Insertion sort 
• O(N2) 
Bucket sort 
• have N integers in the range 1 to M (or 0 to M-1) 
• keep an array called count[M], initialized to 0 
• When Ai is read, count[Ai]++. 
• After all the input is read, scan the count array, printing out a 



representation of the sorted list 
• O(M+N) 
Radix sort 
• use several passes of bucket 
• bucket-sort by the least significant “digit” significant 
• more than one number could fall into the same bucket and 

these numbers could be different → keep them in a list 
• Bad idea to use array since all number can have a digit in 

common (worse case for space), this will make a bucket of that 
digit becomes size = N. Don’t know which one → every 
bucket’s size = N → space = O(N2) 

• when several numbers enter a bucket, they enter in sorted order 
• running time → O(P(N+B)) → O(N) 

o P = number of passes (digit), usually constant 
o N = number of element to sort 
o B = number of bucket, usually << N 

Mergesort 
• worst-case O(N log N) 
merge: O(N) ← at most N-1 comparisons are made 
• takes 2 input arrays A and B, an output array C, and three 

counters, Actr, Bctr, and Cctr, which are initially set to the 
beginning of their respective arrays 

• the smaller of A[Actr] and B{Bctr] is copied to the next entry 
in C, and the appropriate counter are advanced. 

• When either input list is exhausted, the remainder of the order 
list is copied to C 

static void merge(Comparable[] a, Comparable[] tmpArray,  
int leftPos, int rightPos, int rightEnd) 

{ 
//leftPos, rightPos → where we’re considering now 
int leftEnd = rightPos – 1; 
int tmpPos = leftPos;  

//will denote position in the tmpArray considered now 
int numElements = rightEnd – leftPos + 1; 
 
while(leftPos<=leftEnd && rightPos<=rightEnd) 
{ 

if(a[leftPos].compareTo(a[rightPos])<=0) 
tmpArray[tmpPos++] = a[leftPos++]; 

else 

tmpArray[tmpPos++] = a[rightPos++]; 
} 
 
//one of the following 2 while loop will actually used 
//it is used to  
//copy the rest of the “either” left “or” right half 
while(leftPos<=leftEnd) 
{ 

tmpArray[tmpPos++] = a[leftPos++]; 
} 
while(rightPos<=rightEnd) 
{ 

tmpArray[tmpPos++] = a[rightPos++]; 
} 
 
//copy tmpArray back 
for(int i=0; i<numOfELements; i++, rightEnd--) 
{ 

a[rightEnd] = tmpArray[rightEnd]; 
} 

} 
static void mergeSort(Comparable[] a) 
{ 

Comparable[] tmpArray = new Comparable[a.length]; 
mergeSort(a, tmpArray, 0, a.length-1); 

} 
static void mergeSort(Comparable[] a, Comparable[] tmpArray,  

int left, int right) 
{ 

if(left<right) 
{ 

int center = (left+right)/2; 
mergeSort(a, tmpArray, left, center); 
mergeSort(a, tmpArray, center+1, right); 
merge(a, tmpArray, left, center+1, right); 

} 
} 

• T(1) = 1, T(N) = 2T(N/2) + N → T(N) = N log N + N 
= O(N log N) 

• use O(N) extra memory 
Quicksort 
• fastest known sorting algorithm in practice 
• average: O(N log N) 
• worst case: O(N2) 
• If the number of elements in S is 0 or 1, then return 
• Pick any element v in S → pivot 

o works no matter which element is chosen 
o good choice → median of first,center,last 



• Partition S-{v} into 2 disjoint groups: 
o S1={x∈S-{v}|x≤v} 
o S2={x∈S-{v}|x≥v} 

• Return {quicksort(S1) followed by v followed by 
quicksort(S2)} 

 


