+¥ "
h(t) = C\)H (f )ejZthdf ¥%.9® H ( f ) — c\j1(t)e_ i i gy

_¥ -¥

For w(t)=w(t- a)
WA h(t)=_+:c‘)w(i_:ﬂh(t-t)dt =_+9w(m)h(t- (m+a))dm

= ow(m)h((t- a)- m)dm=y(t- a) = (1

-¥

Heter odyne Outputs are circularly Gaussian

[-channel
— j(wt+a)
s (1) =Re N (1)e} LPF, h —X(0)
T cos(wt +a)
LO
o | Y 2 =X® +iY(©
real p
nonstationary B
wide-band
0-mean v sin(w.t+q)
Gaussian X , LPF h |— Sy
o(0) = Im{N (1) ™7} ©
Q-channel

Given
N(t) : Noise Process, real ,non-stationary, broadband, O-mean, Gaussian
LPF islowpass in the sense that,
for any fixed u,
h(t,u) varies with t orders of magnitude more slowly than does a sinewave at the
carrier frequency f.
Then, {Z(t) = X(t) +jY (1)} is
0-mean proper complex Gaussian random process (EZ(s)Z(t) = 0)
distributed in a manner that is independent of the LO phase f

I (t)=N(t)cos(wt+q)= Re{ N (t)ej(wchq)}

{I(t)} is Gaussian, but not w.s.s.



Gaussian because I (t) = N(t) times a deterministic constant depends only on timet.
Thus, I, =AN,. Since N, isGaussian, |, is Gaussian.

Not w.s.s., because R i(s,t) does not depends only on t-s
Q(t) = N(t)sin(w,t +q) =Im{ N (t) e’}
Similarly, Gaussian, but not w.s.s.
C(t)=N(t)e'™ =1 (t)+ jQ(t) is 0-mean, complex, and Gaussian
because { N(t)} is zero-mean Gaussian.
EC(t)=(EN(t))e"") = 0%/ =0
{C(®)} isw.ss. if {N(t)} isw.ss.
R.(st) = EC(s)C(t) =EN(s)e/"=" N t)e ')
=(EN(s)N(t))e™ =
=R, (S,t)e' i (t-s)

If N(t) isw.s.s,
R.(st)=Ry(t- s)e ™9 =R (t-s)
X(t)= z‘)l (s)h(s,t)ds= z‘)N (s)cos(w,s+q )h(s,t)ds

Y(t)= C‘)Q(s)h(s,t)ds:_?N(s)sin(wcs+q )h(s,t)ds

-¥
Since {Z(t)} istheresult of linearly filtering { C(t)},
{Z(t)} is 0-mean, complex, Gaussian process.

EZ(u)Z(v)=0
Z(u)=¢ (s )h(s u)ds+j(‘§3(s)h(s,u)ds
=1 (s)+iQ(s))h(s u)ds = ¢ (s)h(s u)as

_d\|() s (s,u)ds
Similarly, Z(v)=N(t)e’ i(wtsa)py h(t, v)dt
EZ (u)Z(v) = EQN (s)e'™**n(s,u)dsN (t)h(t.v)t
= @h(su)n(ev)e I TEN ()N (1) s
= @h(su)h(tv)e™ IR (st) dsdt

Assume white noise :

R (S’t) =Ngd (t B S)



So(f)=N, foral-¥ <f<¥
EZ (u)Z(v) = gp(s,u)h(tv)e 0N (t - s)dsdt
= h(tu)h(tv)e ™ Nt

Assume LPF: hislowpass in the sense of passing only frequency content much
smaller than w;

For any fixed u and v, h(t,u)h(t,v) varies slowly with t in comparison with the real and
the imaginary parts of /", both of which oscillate rapidly and symmetrically about

zero.
Thus, EZ(u)Z(v)» 0 foral uandv

Distribution of {z(t)} does not depend on the value of the LO phase offset q.
Let{ Z,(t)} be{Z(t)} inthecaseq=0.
{Z(t)} is proper Gaussian for any value of q
For any given g, consider the process { W(t)} defined by
W(t) =e"Z,(t)
Clearly, {W(t)} isacomplex Gaussian process.
Moreover,
EW (t) =e“EZ,(t) =0=EZ,(t)

Ky (st) = EW (s)W(t) = EeZ, (s)€ " Z, (t) = EZ,(3) Z, (t) = K, (s:t)
So, {W(t)} isdistributed exactly the way {Zo(t)} is.
Also,
EW (s)W (t) = Ee"Z,(s)e"Z,(t) =e*EZ,(s)Z,(t) =0
So, {W(t)} is proper.
Z(t)= N (s)e'""h(s,t)ds =" N (s)e™=h(s,t)ds=e"Z,(t)
Thus, {Z(t)} for general q isjust a phase-shifted version of the circularly Gaussian
process { Zo(t)}, so the joint distribution { Z(t)} does not depend on the choice of g.

Now suppose the noise input { N(t)} is not necessarily white and stationary,

but continue to assume that typical realization of {N(t)} vary rapidly with respect to a
sinewave at the carrier frequency f.

Then, the noise autocorrelation function Ry(s;t) is small unless Jt-sffc << 1.
EZ(u)Z(v) = (s u)h(t,v) eI 2R | (s,t) dsdt
We can replace the factor h(s,u)h(t,v) glle(=)a) py h(t,u)h(t,v)e’™*) without

materially affecting the result.
It follows that



¥

EZ(u)Z(v) = dh(t,u)h(t,v)e™ IR (t)dt

where R, (t) = ¥C\)RN (st)ds .

We therefore need assume only that the function Ry(t) defined by the preceding equation
varies slowly with respect to e in order to preserve the desired conclusion that
EZ (u)Z(V) » 0 for al uandv.

Thiswill be the case provided any and all underlying sources of nonstationariness in the
input noise vary slowly in comparison with a sinewave at the carrier frequency.

QAM Communications— Quadrature Amplitude Modulation

QAM isadigital transmission technique which conveys data at arate of m-bits per symbol
by sending one of M = 2™ symbols during each of a succession of band intervals of duration
T.

The M points are arranged in a constellation in the (x,y)-plane

The k™ point in the constellation may be described either by its Cartesian coordinates (xq,Yi)
or by its polar coordinates (rx,0x)

Conflicting goals: want to arrange the points in the constellation so that

They are close to the origin on average so that it does not require much energy to send
them

No two of them are close enough together that the channel noise often causes usto
mistake them for one another.

Goal: find the conditional probability of transmission for each symbol in the constellation
during a baud given the data received therein, and then compute therefrom maximum
likelihood ratio combining metrics on a bit-by-bit inorder to enable optimum soft-decision
decoding.

Let
transmitter carrier p cos(w_t +f )

receiver LO b cos(wct +fA)

transmitted signal
= |-channel signal + Q-channel signal
= A(t)cos(wt +f )+ B(t)sin(wt+f )

where A(t)=Q Ag; (t- KT)
(t

B(t)=8 B.g (t- KT)



a8t o]
g: (3 P an appropriately chosen finite energy pulse ¢ 00 (t)dt =E<¥ =
e-¥ 1]

M-ary random variable (Ax, By) is the Cartesian representation of that symbol in
the constellation which represents the k™ m-bit pattern of the coded source
data.

N(t) P broadband zero mean Gaussian noise that is independent of the transmitter output
Thereceiver input = A(t)cos(wt +f )+ B(t)sin(w,t +f )+ N(t)

X«(t) Receiver I-channel output signal component

X{(t) = (A(t)cos(wt +f )+ B(t)sin(w,t +f ))cos(wct+fA)A h(t)

=(A(t)cos(w,t +1 ) +B(t)sin(w,t +f )) cos(w,t +{ ) A h(t)

(A(t)cos(wct +f )cos(wct +fA)+ B(t)sin(w,t +f )cos(wct +fA))A h(t)

gé—z‘A(t)(cos(chHf +f ) +cos(f - f ))+%B(t)(sin(2wct+f +f )+sin(f - f ))ZA h(t)

LTI LPF whose impulse response is h(t) filters the 2w, terms
:%(A(t)cos(f - )+B(t)sin(f - f ))A h(t)
:%(A(t)COS(Df )+B(t)sin(Df ))Ah(t)

where Df =f - f
:%AA h(t) cos(Df )+%BA h(t)sin(Df )

Y4(t) Receiver Q-channel output signal component



Y, (1) = (A(t) cos(w,t +1 ) + B(t)sin(w,t +f ))sin(w,t + ) A h(t)

I
>

(t)cosw,t +f )sin(wct +) + B(t)sin(wt +1 )sin(wt +f ) A (1)

:?—Z‘A(t)(sin(ZWCHf +fA)- sin(f -f ))+%B(t)(cos(f - fA)- COS(Z\NCt+f +f ))EA h(t)
%( At sm(f - fA)+ B(t)cos(f -f ))A h(t)
=- ~ AR h(t)sin(DF )+ BA h(t)cos(DX )

2X, (t) = AR h(t)cos(DF ) +2 BAh(t)sin(Dt )
= A (t- K1) 2An(0)cos(0r )+ B B (t- k1) A h(t)sin(or )
:féaék A (g (t- KT)An(t ))BCOS( )+§aék B, (gr (t- kT)A h(t))gsm(Df )

:?éaék A(f(t- kT))acos( )+§aék B, (f (t- kT))gsin(Df )
:ék f(t- kT)(AK cos(Df )+ B, sin(Df ))

where f (t)=(g; Ah)(t)
Similarly,
2Ys(t)=ék f(t- kT)(- Acsin(Df )+B, cos(Df ))

Introduce the polar representation of the pointsin the QAM constellation, namely (Rk : Qk)

where R =VA‘+B" Qk:tan‘léa"ig

A =R, cos(Q,) B, =R.sin(Qy)
2X3(t):ék f (t- KT)(R, cos(Q,)cos(Df )+ R, sin(Q,)sin(Df ))
:ék R cos(Q, - Df ) f (t- KT)
2Ys(t):ék f (t- KT)(- R cos(Q,)sin(Df )+ R, sin(Q, ) cos(Df ))
:ék R sin(Q, - Df ) f(t- kT)

Define Z, (t) = X, (t)+ jY, (t) =%5 Re(@ ) (t- kT)
k

- the overall heterodyne receiver output



Z(t)=ZS(t)+Zn(t)=%é Re/ ) f (t- KT)+Z,(t)

Zn(t) is

Xn(t)+]Yn(t) where Xq(t) and Yn(t) are the noise components of the I-channel and Q-
channel of the receiver, respectively.

O-mean circularly Gaussian random process
independent fof the signal

distributed in a manner that is independent of the LO phase f

To recover data Ao, Bo, A1, By, ..., An, Bn,
study Z(t) over sometime period, say —LT £t £ nT+LT whereL <<n

LT LT
I

A
v

I I I I I
0 Ao As An,
By B: Bn

Maximum Likelihood Segence Estimation:
Choose that one of M™? possible symbols sequences &, by, ..., @, bn

that maximize P, (z- z,(ay.....b,))
(M = constellation size)

QAM example
8-ary QAM constellation

(to1) | (ooz) { (oo0O)
(o | (09 | (a2)
(100) (010)
(a0 Lo
(110) | (112) | (011)
(ara) | ©0-a) | (a-2)
wherea> 0
1£i£4
Message M; ® codeword C = X,X, X, X%, X
A_,—JA_,—J
(AB) (A,B,)
A+]B A+iB

(A1, B1) and (A2, By) are the Cartesian coordinates of the symbolsin the QAM constellation
that correspond, respectively, to the first three bits and the remaining three bits of the code
word for the selected message

P(C=c) isidentical for al i.

Receiver



use LPF with h(% that is designed to eliminate intersymbol interference (1Sl)

1 ifk=¢
f (KT - ¢T)=(g; Ah)(KT - éT)_dM-%O et

recover the carrier phase perfectly b Df =0

Z, = gez (T)9 characterized by s,,s,
&Z,(2T) g

Z (T
From overall output of the recelver Z = geZ(T) gzanS(T)+ ”( ) &ggigobserved,

determine M; sent
Todo this,

Need to find which i maximize P(C =¢ |Z

=;) fori=1,2234

e e

P(C=c) and P(Z =z) areindependent of i.
So, need to find which i maximize P(Z =27]C =c)
Find Zs =z, that correspondstoC =¢,
HAB)O afa, bl) s +ibo  &r, Ql)
C=c® {AB)-® ((.h):® éambz or (r,

9&2)
815 afé

OO
ol



®g o i) |
,(7) o_géﬁeQ (1K) 2 amglory (1 1) el®r(1-2r) ¢
2.7 (4 ot (- i) $R (T T) e R T )
k 4

aRe' ¥ 1+ Re/(%>00 _aRe® 0 _am +jbo
éRle %) 0 + Rel() éRze @) Q &a,+ jbg
Z=2.+Z, . Theefore, Z,=2- 2, and

= = 1 (22 )TKZl (2-2)
P(z,=2- z,) pzdet(Kz)e
&, 0
Rt A

Find i that maximize P(Z, =z, )
Thisi” minimize (z, ) K;(z,)

Since ((1 Ir |2)slsz)_z; Kz, :z_f|z"“ |2- 2Re{raznﬁ} +21

Thisi” minimize z_f|znu |2 +z—z|zn2i |2 - 2Re{r aznm}
It is most likely that sender sent M.

Moment of Complex (proper) Gaussian vectors

L B _
EOZkaOZhD:OunIessAzB
g oa

For A =B, EOZkaOZhO—EOZ Zn = 4 oz Zn,

a=1l b=1 =1 Pl Py a=1
where P isthe set of al permutations P:{1,...,A} ® {1,...,A}
Example: A =2
EZ, Z, ZnZn, :(Ezkizl)>(Ezk22h2)+(Ezk12h2)>(Ezk22n)
For kl = kz = hl = hz,
4 2\2
Elz =2(Elz[) =25



