
Renewal Theory 
• The counting process ( ){ }A t , where t may be either discrete or continuous, is a 

renewal process if, 
given the count has increased at time t*, 
the process of future increments ( ) ( ){ }* , *A s A t s t− >  and the process of past 

increments ( ) ( ){ }* , *A t A s s t− <  are statistically independent. 

• Markov counting processes, including both homogeneous and inhomogeneous Poison 
processes, are special cases of renewal processes. 

For any Markov process, be it a counting process or not, we have independence of 
( ) ( ){ },A s s t A t>  from ( ) ( ){ },A s s t A t<  for every t, and hence a fortiori 

independence of ( ) ( ){ }* , *A s A t s t− >  and ( ) ( ){ }* , *A t A s s t− <  

Discrete Time Renewal Processes 
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• { }max :k nA n kτ= ≤ = number of renewals up to and including time k 

At jump, *kA  takes the jumped (higher) value 

ti = the ith gap length between renewals, i ≥ 2 

1 2n nt t tτ = + + +…  = time of the nth renewal 

1kk A kγ τ += −  = residual lifetime at time k 

1 1k k kk A A AL tτ τ+ += − =  = selected lifetime at time k 

• At jump, 
** * 1kk k AL tγ += =  

• Note that ,k kLγ ∈` . Also, k kLγ ≤ . 

• Statistical assumptions 
• t1, t2, … are independent 
• t1 has probability vector ( )0 1, ,g g g= …  

( )1jg P t j= =  



• ti for i ≥ 2 has probability vector ( )1 2, ,f f f= …  i.i.d. 

( )j if P t j= =  ; 2i∀ ≥  

moments of the distribution f 
n

n im Et=  for 2i ≥ , n = 1, 2, 3,… 

We have assumed f0 = 0 in order to preclude the possibility of batch arrivals in 
our renewal counting process. 

• Renewal distribution ⇒ hk, k ≥ 0 ⇒ ( )a renewal occurs at time kkh P=  

• Not a probability distribution. Not sum to 1 in general. In most case of interest, 
sum → ∞. 

• Renewal equation: 
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• h0 = g0+0 
For k = 0, the sum is empty 

• ( )a renewal occurs at time kkh P=  is the sum of 1) the probability that this 
renewal at k is the first renewal and 2) the sum for all j probability that the last 
renewal occur at j, and then this one at k is the next renewal without any renewal 
occurs in between. 

• The right-hand side of the renewal equation breaks down all the instances in 
which there is a renewal at time k into disjoint sets, the jth of which contains all 
those cases in which the renewal that immediately precedes the one at time k takes 
place at time j < k. 

• Alternative form: 
1
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derived by substituting i = k-j 
• ( ){ }A k  is not a Markov chain unless the ti are geometrically distributed. 

This is because, in other than geometrically distributed cases, the residual lifetime γk 
at time k is statistically dependent on the time Lk-γk that has elapsed since the most 
recent renewal. 

• Theorem:  
1) ( ){ }, , 0k kL kγ ≥  is a homogeneous Markov chain. 

2) If { }: 0 1kGCD k f ≠ = , then this Markov chain is aperiodic. 

3) If, in addition, 1m < ∞ , the chain is ergodic. 

Its equilibrium distribution, which is a limiting distribution in the ergodic case, is 
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• Remark 
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• Given that L j= , γ is uniformly distributed over {1, 2, …, j} 
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• Hence, it may help to think of ( ) ( )
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For k = 1, [ ] ( )2 2 1
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Proof of the theorem: 
Consider the case when 1kγ = , then Lk will end at time k+1, where upon Lk+1 will 
be chosen according to the distribution f , and 1 1k kLγ + += . Notationally, 

( ) ( ) 1 1, 1, ~k k k kL j L fγ γ + += ⇒ = . 

Therefore, ( )
1 1 ,, , , , for 1

k k k k j i jL LP i j i j f iγ γ δ
+ + ′ ′ ′′ ′ = =  

⇒ given that 1kγ = , then 1k iγ + ′=  has to equal 1kL j+ ′= , and the 
probability that they are not equal is 0, thus having ,i jδ ′ ′ . 

 

k k+1 

Lk ~ f  Lk+1 ~ f  

γk+1 = Lk+1 
γk = 1 

 
On the other hand, if 1kγ > , then 1k kL L+ =  and 1 1k kγ γ+ = −  (one time step 
closer). ( ) ( ) ( ) ( )1 1, 1, , 1,k k k kL i j L i jγ γ + += > ⇒ = − . 

Since we want j j′ =  and 1i i′ = − , 

( )
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+ + ′ ′ −′ ′ = > . 

So, the general entry in one-step transition matrix is 
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Note that it does not depend on the time k, so the Markov chain is homogeneous. 
To verify that the distribution ( ),P i j  in the theorem statement is the equilibrium 

distribution corresponding to the transition matrix ( ), ,P i j i j′ ′ , we need to show 
that 
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Property (1) is trivial because  
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The first term will be zero if i j′ ′≠ . The second terms will be zero if i j′ ′≥ . To 
see this, assume i j′ ′≥ . Note that the sum goes from i = 1 to j′. So,  

0 1 1i j j i′ ′ ′≤ − ≤ − < ≤ , 

i.e. 1i −  will never equal to (always less than) i′ . Because of , 1i iδ ′ − , the sum is 

zero. Hence, we conclude that ( ),g i j′ ′  = (a) 
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Note the factor of jf ′ . This implies that the result is zero for 1j′ < . So we 
concern only with 1j′ ≥ .  
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there is no i such that 1i i′− = . This is because 0 1i j′≤ − ≤  and 1j′ ≥ . Hence, 
the cases when 0i′ <  yields zero due to the existence of , 1i iδ ′ − . The case when 

0i′ =  also yields zero because , 1i iδ ′ −  requires i = 1 which would make ,11 iδ−  
zero. So, nonzero result is possible only when 1i′ ≥ . Combining i j′ ′<  and 1i′ ≥ , 
we know that there exists i such that 1i i′− =  and i ≠ 1; hence, 
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Finally we have  



(a) when i j′ ′= , ( ),g i j′ ′  = 
1

jf
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′  if 1 i j′ ′≤ = , 0 otherwise. 

(b) when i j′ ′< , ( ),g i j′ ′  = 
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(c) when i j′ ′> , ( ),g i j′ ′  = 0. 
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, which equals ( ),P i j′ ′  as 

was to be shown. 

Some facts about Continuous Time Renewal Processes 
• Def: 

1 2, ,t t …  are independent, 1t  has cdf G, and the kt  for 2k ≥  are i.i.d. with cdf F.  

1

n

n k
k

tτ
=

= ∑  denote the time of occurrence of the nth renewal. 

The renewal counting process ( ){ }, 0A t t ≥  is defined by { }max :t nA n tτ= ≤ . 

The residual lifetime at t is 1tt A tγ τ += − . 

The selected lifetime at t is 1 1t t tt A A AL tτ τ+ += − = . 

( ) [ ]tH t E A=  = Expected number of renewals up to (and including) time t. 

mk = the kth moment of F. 

• Continuous time renewal equation: rate ( ) ( ) ( ) ( ) ( )
0

td H t h t g t h t s f s ds
dt

= = + −∫ . 

• A distribution is said to be lattice if its points of increase are contained in the set of 
integral multiples of some real number r; otherwise it is non-lattice. 

• Blackwell’s Renewal Theorem: Suppose F is non-lattice. The for fixed h > 0, 
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Loosely stated, Blackwell’s theorem says that in non-lattice cases the renewal process 
eventually “forgets” about initial conditions (i.e., about where the time origin is) in 
the sense that, at any randomly chosen time t in the remote future, renewals are 
occurring in the vicinity of t at a rate versus time of 1

1m − . 
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• If F has density f, then ( )
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• We shall assume the F(0) = 0, meaning that there is zero probability that no gap 
occurs between renewals; this is consistent with our having ruled out multiple 
simultaneous renewals in discrete time. 

• Laplace-Stieltjes Transform: If ( )BF t  is the cdf of a nonnegative random variable, 

then its L-S transform ( )gL s  is defined by ( ) ( )
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