Poisson Processes

Used to model phenomena that occur at “purely random” instants in time.
e Characterization Il supports this interpretation strongly.

Define {X (t),t e T}, where T is an interval of the real line (often [0,c0) or (-c0,) )

Def: {X (t)} is a homogeneous Poisson process with rate A

if itis a homogeneous Markov process with
state space § = {0,+1,%2,...} (or sometimes § = {0,1,2,...}) and
A ifj =i+l
transition rate matrix ¢, ; =1-4 if j
0  otherwise

-2 4 0 O 0
0 -4 4 0 0
e Q=0 0 -4 41 0
: : : ... 0
0 0 0 0 -4 2

Other useful characterizations:
{X (t),t € T} has integer-valued, right continuous sample paths.

I (a) Fortp<t;<...<ty,,

the random variable X(to), X(t1)-X(to), X(t2)-X(t1), ..., X(tn)-X(tn-1) are
independent,

and
(b) For s <t, X(t)-X(s) ~ P(A(t—5s));

-2(t-s)

e, P[X(1)=X (s)=k]=((t=3))" k!

Il LetT=]0,0)and X(0)=0
Then {X (t),t e T} is Poisson with rate A if and only if

(a) For s <t, given that X(t)-X(s) = n, the jump times of {X (-)} in [s,t] are

uniformly distributed over {t eR":s<r<7,<...<7, < t} ,

e [For example,
e If given number of jump = 2 during time s and t,




For each jump, the time that is occurs distributed according to
1 .

f.(u)=—,s<u<t (i.i.d.

3 (u) - (iid)

The following plot shows the joint-pdf of the times of jump:,

fy o (uv)=
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—~—, s<u,V<t.
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If also numbered the jump, then the second jump has to occur after the

, S<1,<7,<t.
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And
(b) Fors <t, X(t)-X(s) ~ P(A(t—s)).

e Holding time Ty arei.i.d. £(4) random variable.

ET=1
A

All states are transient (in fact, non-return)
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Examples

¢ Radioactive disintegrations (hence Geiger counter counts)

e Arrival times of customers

¢ Raindrop arrivals in a water glass.

e Packet arrivals at a data communication network node.

The initial condition for the Poisson process is | p, (0) =1|, and p; (0)=0 for j>0.
(At time O, start at state 0).

Derivation of the state probabilities from the transition rate matrix.

From p'(t)=p(t)Q, we have

-A 4 0 0 0

o -4 4 0 - 0
[y (1), oy (1), ] =[ po(t). py(t)...] O 0 -2 4 - 0.

0 0 0 0 -2 2

Hence, py(t)=-4Ap,(t),and pi(t)=-Ap;(t)+Ap,(t) forj=>1.
From pg(t)=-Ap,(t), we have p,(t)=ce . The initial condition p,(0)=1

requires that ¢ = 1. Hence, p,(t)=e".

at)!
We will show that p, (t) = %e” by induction. We have already shown that
j!

. . at)! .
this is true for the case j = 1. Now assume that p (t) :%e*t forj=0,1, ...,
j!

k-1
k-1. Now, from p, (t)=-Ap, (t)+Ap,(t)=— 4 P, (t)+/1(/u) e ™. The
a0 (k-1)!

A(t)



solution for this differential equation is p, (t)= effa(t)dt_[ﬂ(t)eja(t)dtdt b e a0
Now, ja(t)dt = At. So we have

k-1
At (M) AT At At At —t
p(t)=e Ilmg/‘e”/duce =e= ree
Using the initial condition p, (0) =0, we have ¢ = 0, and hence,
a /'thk
pk (t) =€ W .

State diagram:
At time t, consider the next dt time unit.
e Pr[at least one jump occurs before dt] = Pr[1® jump occurs before dt]

L (2d)’ )
=1-¢e "‘“Tzl—e At =1-(1- Adt)+o(dt) = Adt + o(dt).
_ P[1" jumpbeforedt]  Adt-+o(dt)
dt—0 dt dt—0 dt

d adt

P| 1" jump before dt _ At *(1_9 - Adt

o i PLE dump | _limZ2
dt—0 dt dt—0 dt dt—0 d dt—0 l

. P[Z”d jump before dt}

= P[lSt jump before dt] P[Z““ jump before dt|1* jump before dt}

We know that P[Z”d jump before dt

because the time interval is smaller.
Thus,

P[2" jump before dt | <(P[1* jump before dt])z = (1) = (adt)’

1% jump before dt] <P[1* jump before dt |

P| 2" jump before dt
lim [ Jump ] =0
dt—0 dt

e This is consistent with what we have in the Q matrix.




