
Poisson Processes 
• Used to model phenomena that occur at “purely random” instants in time. 

• Characterization II supports this interpretation strongly. 

• Define ( ){ },X t t T∈ , where T is an interval of the real line (often [0,∞) or (-∞,∞) ) 

Def: ( ){ }X t  is a homogeneous Poisson process with rate λ  

if  it is a homogeneous Markov process with  
state space S = { }0, 1, 2,± ± …  (or sometimes S = { }0,1, 2,… ) and 
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• Other useful characterizations: 

( ){ },X t t T∈  has integer-valued, right continuous sample paths. 

I (a) For t0 < t1 < … < tn, 
the random variable X(t0), X(t1)-X(t0), X(t2)-X(t1), …, X(tn)-X(tn-1) are 
independent, 

and 
(b) For s < t, X(t)-X(s) ~ ( )( )t sλ −P ; 
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II Let T = [0, ∞) and X(0) = 0 
Then ( ){ },X t t T∈  is Poisson with rate λ if and only if 

(a) For s < t, given that X(t)-X(s) = n, the jump times of ( ){ }X ⋅  in [s,t] are 

uniformly distributed over { }1 2:n
nt s tτ τ τ∈ < < < < <\ … , 

• For example, 
• If given number of jump = 2 during time s and t, 



For each jump, the time that is occurs distributed according to 
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, s ≤ u ≤ t  (i.i.d.) 

The following plot shows the joint-pdf of the times of jump:, 
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• If also numbered the jump, then the second jump has to occur after the 

first jump: ( )
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And 
(b) For s < t, X(t)-X(s) ~ ( )( )t sλ −P . 

• Holding time Tk are i.i.d. ( )λE  random variable.  
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All states are transient (in fact, non-return) 
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• Examples 

• Radioactive disintegrations (hence Geiger counter counts) 
• Arrival times of customers 
• Raindrop arrivals in a water glass. 
• Packet arrivals at a data communication network node. 

• The initial condition for the Poisson process is ( )0 0 1p = , and ( )0 0jp =  for j > 0. 
(At time 0, start at state 0). 

• Derivation of the state probabilities from the transition rate matrix. 

From ( ) ( )p t p t Q′ = , we have  
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Hence, ( ) ( )0 0p t p tλ′ = − , and ( ) ( ) ( )1j j jp t p t p tλ λ −′ = − +  for j ≥ 1. 

From ( ) ( )0 0p t p tλ′ = − , we have ( )0
tp t ce λ−= . The initial condition ( )0 0 1p =  

requires that c = 1. Hence, ( )0
tp t e λ−= . 
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. The 



solution for this differential equation is ( ) ( ) ( ) ( ) ( )t dt t dt t dt
kp t e t e dt ce
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Using the initial condition ( )0 0kp = , we have c = 0, and hence, 
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• State diagram: 
At time t, consider the next dt time unit. 
• Pr[at least one jump occurs before dt] = Pr[1st jump occurs before dt] 

( ) ( ) ( ) ( )
0

1 1 1 1
0!

dt dtdt
e e dt o dt dt o dtλ λλ

λ λ− −= − = − = − − + = + . 

( )st

0 0

1  jump before dt
lim lim
dt dt

P dt o dt
dt dt

λ
λ

→ →

⎡ ⎤ +⎣ ⎦ = =  

• 
( )st

0 0 0 0

11  jump before dt 1lim lim lim lim
1

dt
dt dt

dt dt dt dt

d eP e edt
ddt dt dt
dt

λ
λ λλ λ

−
− −

→ → → →

−⎡ ⎤ −⎣ ⎦ = = = =  

• nd2  jump before dtP ⎡ ⎤⎣ ⎦  
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because the time interval is smaller.  
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• This is consistent with what we have in the Q matrix. 

 
 


