
Markov String: 1
nX : ( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 1 1 1

n
k k k k n np x p x p x x p x x p x x p x x− + −= " "  

• ≡ For all k, 1 k n< ≤ , ( ) ( )1
1 1
k

k k kp x x p x x−
−= . 

• Ordered substring of Markov string is Markov: 

For 1 20 kn n n n≤ < < < ≤" , ( )1 2
, , ,

kn n nX X X…  is also a Markov string. 

• Given kX  (the present), we have 1
1
kX −  (the past) and 1

n
kX +  (the future) are independent: 

( ) ( ) ( )1 1
1 1 1 1,k n n k

k k k k kp x x x p x x p x x− −
+ += . 

• Given kX , we have 1kX −  and 1kX +   are independent: ( ) ( ) ( )1 1 1 1,k k k k k k kp x x x p x x p x x− + − += . 

• For 1 2 10 r r r jm m m k m m n+ +≤ < < < < < < ≤" " , 

( ) ( ) ( )1 1 1 1
, , , , , , , , ,

r r r j r r r jm m m m k m m k m m kp x x x x x p x x x p x x x
+ + + +

=… … … … . 

• For1 k n≤ < , and 1k m n+ < ≤ , ( ) ( ) ( )1 1 1
m
k k k k m mp x x p x x p x x+ + −= " . 

• ( ) ( )1 1
m k m
k j k kp x x p x x+ +=  

• Reverse Markov string is also a Markov string 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 1 1 1 1 2k k n n n n n k kp x p x x p x x p x x p x p x x p x x p x x+ − − +=" " " "  

• Ordered grouped Markov string is still a Markov string: Let k0 = 0, 1 21 mk k k n≤ < < < =" . For 1 m≤ ≤A , 

define ( )1 11 1, , ,k k ky x x x
− −+ +=
A A AA

K … . Then, 1
myK  is a Markov string. 
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Proof of properties 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 1 1 1
n

k k k k n np x p x p x x p x x p x x p x x− + −= " " , then,  

a) ( ) ( ) ( ) ( )1 1 2 1 1
k

k kp x p x p x x p x x −= "  for all 0 < k ≤ n. ( 1
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By induction, we have ( ) ( )( ) ( ) ( ) ( )1 1 1 2 1 1
n n kk

k kp x p x p x p x x p x x− −
−= = " . 

b) ( ) ( ) ( ) ( )1 1
n
k k k k n np x p x p x x p x x+ −= "  for all 1 ≤ k < n. ( n

kX  is also a Markov string) 
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By induction, we have ( ) ( ) ( ) ( )1 1
n
k k k k n np x p x p x x p x x+ −= " . 

c) ( ) ( ) ( ) ( )1 1
j

k k k k j jp x p x p x x p x x+ −= "  1 k j n≤ < ≤  ( j
kX  is also a Markov string) 

Proof.  a) and b). 

d) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
1 1 1 2 1 1 2 1 1 2 1 1,k n

k k k k k k k n np x x p x p x x p x x p x x p x x p x x−
+ − − + − + + −= " " . 
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e)  Ordered substring of Markov string is Markov. 
Proof. c) and d). Use c) to cut the beginning and the end part of the string.  Use d) to take any 

amount from the middle. 

f) Given xk, we have xk-1 and xk+1 are independent: ( ) ( ) ( )1 1 1 1,k k k k k k kp x x x p x x p x x− + − +=  
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g) For j k m< < , ( ) ( ) ( ),j m k j k m kp x x x p x x p x x= . 

Proof. From e), ( ) ( )1 2 3, , , ,j k mY Y Y X X X=  is a Markov string. Apply f) to complete the proof. 

h) For1 k n≤ < , and 1k m n+ < ≤ , ( ) ( ) ( )1 1 1
m
k k k k m mp x x p x x p x x+ + −= " . 

Proof. From e), m
kX  is a Markov string. So, ( ) ( ) ( ) ( )1 1

m
k k k k m mp x p x p x x p x x+ −= " . And therefore, 

( ) ( )
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m
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k k k k m m
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p x+ + −= = " . 

i) ( ) ( )1 1
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, where the last equality applies h) directly. 

j) For 1 1j k m+ < < − , ( ) ( ) ( )1 1
1 1,k m k m

j k k j k k kp x x x p x x p x x− −
+ += . 

Proof. ( ) ( )
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, where the last equality uses i). 
A) For 1 2 10 r r r jm m m k m m n+ +≤ < < < < < < ≤" " , 

( ) ( ) ( )1 1 1 1
, , , , , , , , ,

r r r j r r r jm m m m k m m k m m kp x x x x x p x x x p x x x
+ + + +

=… … … … . 

Proof. Because ( )1 1
, , , , , ,

r r r jm m k m mx x x x x
+ +

… …  is an ordered substring of a Markov string, it is 

therefore a Markov string. The property follows from j). 
m) Reverse of a stationary Markov string is also a Markov string 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 1 1 1 1 2k k n n n n n k kp x p x x p x x p x x p x p x x p x x p x x+ − − +=" " " "  

Proof.  
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o) Ordered grouped Markov string is still a Markov string. 

Let k0 = 0, 1 21 mk k k n≤ < < < =" . For 1 m≤ ≤A , define ( )1 11 1, , ,k k ky x x x
− −+ +=
A A AA

K … . Then, 1
myK  is a 

Markov string. 

Proof. From i), we have 1) ( ) ( ) ( )1

1 1 1

1
1 1 1 1

k k k
k k kP y y P x x P x x−

− − −

−
+ += =A A A

A A A

A
A
K K  and 2) 

( ) ( ) ( )1

1 2 1 11 1 1 1
k k k
k k k kP y y P x x P x x−

− − − −− + + += =A A A

A A A AA A
K K . Hence, ( ) ( )1

1 1P y y P y y−
−=A

A A A
K K K K . 

MARKOV CHAINS (MC) 

• ∀i > 1 ( )1−
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• one-step transition probabilities Pi,j = Pr Next state is Current state is j i⎡ ⎤⎣ ⎦  = i jp → = ( )i jp p j i→ =  

• generally, depend on the time (n) at which the step is taking place 
• transition probability matrix P = ,i jP⎡ ⎤⎣ ⎦  

• To write P, start from the first row (currently in first sate), fill in each column of this first row with 
probability that it will go to other state. (So, use out arrow). 

• Row sums = 1. Column sums don’t. 
• Xk or X(k) 

• Discrete random variable 
• Denote the state of the chain at time k. 

• ( )
( ) ( )

, Pr MC will be in state j at time n MC is in state i at time m

Pr   i

,i j

X n j X m

P m n = ⎡ ⎤⎣ ⎦
⎡ ⎤= = =⎣ ⎦

 

• ( ) ( ), ,, i jP m P m nn ⎡ ⎤= ⎣ ⎦  



• {X(k)} is a Markov chain if { }/ 1r∀ ∈` , for any r times (moments, instants) k1 < k2 < … < kr and ∀ 
sequence 1, , rj j…  of states,  

( ) ( ) ( ) ( )1 1 2 2 1 1, , ,r r r r r rP X k j X k j X k j X k j− − − −⎡ ⎤= = = =⎣ ⎦…  = ( ) ( )1 1r r r rP X k j X k j− −⎡ ⎤= =⎣ ⎦  

•  “Given the present, the future becomes independent of the past.” 
• Chapman-Kolmogorov Equations 

• For time indices m < u < n, ( ) ( ) ( ), , ,P m n P m u P u n=  

Proof. 

( ) ( ) ( ), ,i jP m n P X n j X m i⎡ ⎤= = =⎣ ⎦ ( ) ( ) ( )( ),
k

P X n j X u k X m i= = = =∑  

kth term in the sum is the probability of  all paths from i at time m to j at time n that pass 
through k at time u 

Use ( ) ( ) ( )P A B C P B C P A B C∩ = ∩ . 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

, , ,i j
k

k

P m n P X n j X u k X m i P X u k X m i

P X n j X u k P X u k X m i

= = = = = =

= = = = =

∑

∑
 

; from Markov property. 
( ) ( ) ( ) ( ), , , ,, , , ,k j i k i k k j

k k

P u n P m u P m u P u n= =∑ ∑  

• All transition matrices P(m,n) governing (n-m)-step transition probabilities can be expressed in terms of 1-
step transition matrices {P(k,k+1)} in the case of MC. 

( ) ( )
1

, , 1
n

k m

P m n P k k
−

=

= +∏  

Proof ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

, , 1 1,

, 1 1, 2 2,

, 1 1, 2 1,

P m n P m m P m n

P m m P m m P m n

P m m P m m P n n

= + +

= + + + +

= + + + −"

 

• Let ( ) ( ) ( )( )0 1, ,p m p m p m= …  be the row vector of state probabilities at time m. Then, 

( ) ( ) ( ),p n p m P m n= 1 

Homogeneous MC with 1-step transition matrix P 
• MC is homogeneous if all one-step transition matrices are all identical ≡ P∃ k∀  P(k, k+1) = P. 
For homogeneous MC, 
• ( ), n mP m n P −=  

                                                 
1 Caution: x here means row vector 



• The (i,j) entry in Pn-m is positive if and only if there is a path of length n-m from state i to state j. 
• ( ) ( ) n mp n p m P −=  

• ( ) ( )0 np n p P=  

• T = holding time in state k = the random duration of a stay in state k. T ∈ {1, 2, 3 …}. 
 

k 
r 

 
• Let r = probability, if any, on the state’s self loop. T is geometrically distributed with parameter r.  
• Pr[T = t] 

= Pr[exactly t-1 traversals of self loop before leaving] 
= ( ) 11 tr r −−  

• Holding time {Tk} of a discrete-time homogeneous Markov chain. 
( ) ( ){ }0 min 1: 0T X X= ≥ ≠A A  

( ) ( ){ }0 1 0 1min 1:k k kT X T T X T T− −= ≥ + + + ≠ + +A … A …  for k ≥ 1 

• {Tk} are geometric random variable that are independent if one is given the sequence of states. 

n 

X(n) 

T0 T1 
T2 

 
• {Tk} are not identically distributed because, in general, the parameter r of the geometric distribution 

varies with the state. 



Classes of states 
 

recurrent 
[ ]Pr 1iT < ∞ =  

transient 
[ ]Pr 1iT < ∞ <  

0iπ =  

positive recurrent 
iET < ∞  

0iπ >  

null recurrent 
iET = ∞  

0iπ =  

state i

 
• Def: 

• If ( )ijp n  > 0 for some integer n ≥ 1, state j is accessible from state i, and we write i → j. 

(There is a sequence of transitions from i to j that has nonzero probabilitiy.) 
• If i → j and j → i, then states i and j communicate, and we write i ↔ j. 
• Two states belong to the same (communicating) class if they communicate with each other. 

• Properties 
• If i → j and j → k, then i → k. 

Proof. If i → j then there is a nonzero-probability path from i to j. Similarly, j → k implies that there 
is a nonzero-probability path from j to k. The combined paths form a nonzero-probability 
path from i to k. 

• i ↔ j ⇔ j ↔ i 
• {i ↔ j and j ↔ k} implies {i ↔ k} 
• Two different classes of states must be disjoint. 

Proof. Having a state in common would imply that the states from both classes communicate with 
each other. 

• The communicating class of state i is ( )C i = { }:j i j↔  

• If ( )C i  = ∅, i is a non-return state 

(once out to another state, never return here.) 
• Ex. 



 

 
• Caution: if Pi,i > 0, then state i is not a non-return state since i ∈ C(i) 

• A non-empty class C of states is a communicating class if C = C(i) for some i. 
• If C1 and C2 are communicating classes, 

Then either C1 = C2 or 1 2C C∩ =∅ . 

• All states in a communicating class have the same period, also called the class’s period. 
• Ex. 1-state, transient communicating class: 

 

 
• Ex. 1-state, absorbing communicating class: 

 

 
• The states of a Markov chain consist of one or more disjoint communication classes. 
• The state space of a MC can be decomposed into a union of the form 1 2 3C C C∪ ∪ ∪…  

Where the Ci are disjoint and each is either a communicating class or contains exactly one non-return state. 
• MC chain is irreducible or indecomposable if 

≡ all pairs of states communicates 
≡  entire state space consists of one communicating class 
• Ex. reducible (decomposable) if has 1-state, absorbing communicating class 

 
• Either of the following is a sufficient condition of an irreducible MC to be aperiodic 

• Pii > 0 for some i (self-loop) 
• Pn > 0 for some n (common path length for any state pair) 

• Define an indicator function: ( )
1,
0, otherwisei

X i
I X

=⎧
= ⎨
⎩

 

• Def: Suppose we start a Markov chain in a recurrent state i at time n = 0. 



• Let ( ) ( ) ( )1 , 1 2 ,i i iT T T+ …  be the times when the process returns to state i, where ( )iT k  is the time that 
elapses between the (k-1)th and kth returns. 

• iπ  = the long-term proportion of time spent in state i. 

• ( )( ) 1i k
T k

∞

=
 form an iid sequence since each return time is independent of previous return times. Let 

( ) ~i iT k T  and the mean recurrence time ( )i iET E T k= ⎡ ⎤⎣ ⎦ . 

• Def: State i is said to be  
• recurrent if suppose we start a Markov chain in state i 

≡  (1) [ ]Pr ever returning to state 1i = . ≡ [ ]Pr 1iT < ∞ = . 

≡  (2) the state reoccurs an infinite number of times. ( ) 0
1

i n
n

E I X X i
∞

=

⎛ ⎞⎡ ⎤
= = ∞⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
∑ . 

≡  (3) ( )
1

ii
n

p n
∞

=

= ∞∑  

• transient if suppose we start a Markov chain in state i 
≡  (1) [ ]Pr ever returning to state 1i < .  

There exists some probability of going out of state i and never come back. 
≡ [ ]Pr 1iT < ∞ <  ≡ [ ]Pr 0iT = ∞ > . 

≡  (2) the state does not reoccur after some finite number of returns. ( ) 0
1

i n
n

E I X X i
∞

=

⎛ ⎞⎡ ⎤= < ∞⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
∑ . 

≡  (3) ( )
1

ii
n

p n
∞

=

< ∞∑ . 

Proof.  “(1) ≡ (2)” Each reoccurrence of the state can be viewed as Bernoulli. Let γ  = 
[ ]Pr ever returning to state 1i < . The probability of having at least n reoccurrences is nγ . When 

1γ < , lim 0n

n
γ

→∞
= . Therefore, a transient state reoccurs only a finite number of times. When 1γ = , 

lim 1n

n
γ

→∞
= . 

“(2) ≡ (3)” We’ll show that  

Expected number of returns to state i = ( ) ( )0
1 1

i n ii
n n

E I X X i p n
∞ ∞

= =

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
∑ ∑ . 

To see this, note that ( ) ( )0 0Pri n n iiE I X X i X i X i p n⎡ = ⎤ = ⎡ = = ⎤ =⎣ ⎦ ⎣ ⎦ . Hence 

( ) ( ) ( )0 0
1 1 1

i n i n ii
n n n

E I X X i E I X X i p n
∞ ∞ ∞

= = =

⎡ ⎤
= = ⎡ = ⎤ =⎣ ⎦⎢ ⎥

⎣ ⎦
∑ ∑ ∑ . 

• Ex.  
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0 < α < 1 
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State i is transient. 
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1 1 1

n
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n n
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α

∞ ∞
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= = < ∞
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j i
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1 α− 1 β−0 1β< ≤  

 
State i is recurrent. 
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p n β α α β
α β
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α β

∞ ∞
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∑
 

• Recurrence and transience is a class property. 
If state i is recurrent and i j↔ , the state j is also recurrent. 

Proof.  If state i is recurrent, then all states in its class will be visited eventually as the process returns to i 
over and over again. 
From i j↔ , we know that ,m n∃  ( ) ( ), 0ji ijp m p n > . Note that 

( ) ( ) ( ) ( )jj ji ii ijp m n k p m p k p n+ + ≥  because the right side of the inequality is just one of the 
possible paths to get from j back to j. Hence, we have 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

1

jj jj ji ii ij
k k k

ji ij ii
k

p k p m n k p m p k p n

p m p n p k

∞ ∞ ∞

= = =

∞

=

≥ + + ≥

⎛ ⎞= = ∞⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑
 

Since all states in a class communicate, if one of the states is recurrent, all of them are recurrent.   
Now, suppose one of the states in a class is transient. This class cannot have any recurrent state; 
otherwise, the rest of the states have to be recurrent, including the one assumed to be transient. 
Therefore, transience is also a class property. 



• The states of a finite-state, irreducible Markov chain are all recurrent. 

Proof. Irreducible Markov chain consists of a single communication class. Therefore, either all its states 
are transient or all its states are recurrent. Because the numbers in the cahin is finite, it is 
impossible for all of the states to be transient. 

Priodicity 
• Def: 

• A state jS  of a Markov chain is periodic if { }/ 1∃ ∈NA , such that k∀ ∈N  ( ) 0jjp k =  whenever k is 
not an integer multiple of A . 
(Note, however, that we are not asserting that ( ) 0jjp k ≠  when k is an integer multiple of A .) 

• The period of a periodic state jS  is the smallest integer A  > 1 such that ( ) 0jjp k =  whenever k is not 
an integer multiple of A . 

• A state jS  of a Markov chain is an aperiodic state if it is not periodic. A state jS  is not periodic if 

{ }/ 1∀ ∈NA , k∃ ∈N  such that k is not an integer multiple of A  and ( ) 0jjp k ≠ . 

• Properties 

• A periodic state can have one and only one period. 
• If any single state in a communicating class is periodic and has period d, then all states in that class are 

periodic and have period d.  
• If one state in a communicating class is aperiodic, then all the states in that class must be aperiodic. 

Proof. If a state iS  in the class is periodic of period d, then all the states in the class would have to 
be periodic with period d. Since jS  belongs to the class, jS  would have to be periodic. Since 

jS  is known to be aperiodic, we have a contradiction caused by assuming that some state in 
the class is periodic. 

• Test for aperiodicity 
(a) ( )1 0jjp ≠  ⇒ state jS  is aperiodic. 

(b) If 1 2,k k∃ ∈N  such that ( ) ( )1 2, 0jj jjp k p k >  and such that k1 and k2 have no common divisors other than 
1, the state jS  is aperiodic. 

Proof. (a) If ( )1 0jjp > , then { }/ 1∀ ∈NA  k∃ ∈N , namely k = 1, which is not an integer multiple of 

A and for which ( )1 0jjp ≠ . 

Proof. (b) { }/ 1∀ ∈NA , one or both of k1 and k2 is not an integer multiple of A . Otherwise, 1≠A  is a 
common divisor of k1 and k2 which contradicts the assumption that that k1 and k2 have no 
common divisors other than 1. 

• Def: 

• A communicating class is periodic of period d if any one state in the class is periodic and has period d. 



• If any state of an irreducible Markov chain is periodic with period d, then we say that the Markov chain 
itself is periodic with period d. 

• An irreducible Markov chain that has one periodic state is called an aperiodic, irreducible Markov 
chain. 
All the states of an aperiodic irreducible Markov chain are aperiodic states. 

• If a Markov chain is irreducible, and if one state is periodic with period d, then all states of that irreducible 
Markov chain is periodic with period d. 

• Periodic irreducible Markov chains do not achieve probabilistic equilibrium 

Limiting Probabilities 
• If all the states in a Markov chain are transient, then all the state probabilities approach zero as n → ∞. 
• If a Markov chain has some transient classes and some recurrent classes, then eventually the process enters 

and remains thereafter in one of the recurrent classes. 
Therefore, we can concentrate on individual recurrent classes whenstudying the limiting probabilities of a 
chain. 

• MC chain possesses a limiting distribution, π, if 
for all (independent of) initial conditions p(0), ( ) ( )lim lim 0 n

n n
p n p P π

→∞ →∞
= =  

• forget its initial conditions in the sense that ( )p n π→  as n →∞  regardless of ( )0p  

• π  is a limiting distribution if and only if ( )lim n
jijn

P π
→∞

=  for all states i and j 

• If p pP= , we say p  is an equilibrium distribution. 

• Every finite-state MC has at least one equilibrium distribution. 
• If a limiting distribution exists, it is the unique equilibrium distribution 
• Every finite state irreducible homogeneous MC has a unique equilibrium distribution. 
• MC that has 2 or more absorbing state has infinite # of equilibrium distribution. (including ones that are 

distributed among the absorbing states in any way.) 

Limiting Probabilities of irreducible Markov chain 

• The proportion of time spent in state i after k returns to i is 
( ) ( ) ( )1 2i i i

k
T T T k+ + +"

. 

Since the state is recurrent, the process returns to state i an infinite number of times. By the law of large 

number, with probability one, ( ) ( ) ( )1 2
lim i i i

ik

T T T k
ET

k→∞

+ + +
=

"
. 

So, the long-term proportion of time spent in state i approaches 
1 : i

iET
π= . 

• Def: 



• State i is positive recurrent if iET < ∞ . 

⇒ 0iπ > . 

• State i is null recurrent if iET = ∞ . 

⇒ 0iπ = . 

• Ergodic states is a positive recurrent, aperiodic state. 
• An ergodic Markov chain is an irreducible, aperiodic, positive recurrent Markov chain. 

• Positive and null recurrence are class properties. 

• 1 0i
iET

π
⎧ ⎫

=⎨ ⎬
⎩ ⎭

 satisfies the equations that define the stationary state pmf: j∀ j i ij
i

Pπ π=∑  , and 1 i
i
π=∑ . 

Proof. Since iπ  is the proportion of time spent in state i, then i ijPπ  is the proportion of time in which  
state j follows i. If we sum over all i, we then obtain the long-term proportion of time in state j, 

jπ . 

• For Markov chains that exhibit stationary behavior, the n-step transition matrix approaches a fixed matrix of 
equal rows as n → ∞. ( )( )ij ji j p n π∀ ∀ → . The rows of this limiting matrix consisted of a pmf that satisfies 

j∀ j i ij
i

Pπ π=∑  , and 1 i
i
π=∑ . 

• For an irreducible, aperiodic, and positive recurrent Markov chain, j∀  ( )lim ij jn
p n π

→∞
=  where jπ  is the 

unique nonnegative solution of a pmf that satisfies 1) j∀ j i ij
i

Pπ π=∑  , and 2) 1 i
i

π=∑ . 

Hence, for irreducible, aperiodic, and positive recurrent Markov chains, the state probabilities approach 
steady state values that are independent of the initial condition. These steady state probabilities correspond 
to the long-term proportion of time spent in the given state. 

• For an irreducible, periodic, and positive recurrent Markov chain with period d, j∀  ( )lim jj jn
p nd dπ

→∞
= , 

where jπ  is the unique nonnegative solution of a pmf that satisfies 1) j∀ j i ij
i

Pπ π=∑  , and 2) 1 i
i
π=∑ . 

As before, jπ  represents the proportion of time spent in state j. However, the fact that state j is constrained 
to occur at multiples of d steps implies that the probability of occurrence of the state j is d times greater at 
the allowable times and zero elsewhere. 

• Markov Theorem: 
Every finite-state, irreducible, aperiodic MC possesses a limiting distribution. 

• If MC is periodic, it doesn’t have a limiting distribution. 

Ex.  Figure below has a unique equilibrium distribution 1 1,
2 2

⎛ ⎞
⎜ ⎟
⎝ ⎠

. But no limiting distribution. 



0 1 

1 

1 
 

Equilibrium probability 
• p = the steady-state or equilibrium probability vector 

• p = p P  (use “in” arrow) 

• p = (p1, p2, …, pn), 
1

n

i
i

p
=
∑ = 1 

1 2 3 4 

q q 1 

1 p p 
 

• Out of state: For any state, sum of probabilities on all arrows out of it equals 1. 
(Not so for arrows in.) 
• p+q = 1 

• In the long run, 
• pi = fraction of state transition in the long run that enter state i 
• Consider the arrow into each state: ,j i j i

i
p P p=∑  

• into state: 

p1 = qp2  
p2 = 1p1 + qp3  
p3 = pp2 + 1p4 
p4 = pp3  

( ) ( )1 2 3 4 1 2 3 4

0 1 0 0
0 0

, , , , , ,
0 0
0 0 1 0

q p
p p p p p p p p

q p

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

• homogeneous.  

• To get solution, add 
1

n

i
i

p
=
∑ = 1 

• Ex. Solving technique for small system 



 

1 2 3 4 

q q 1 

1 p p 
 

• Use the blue boundary: 

2 1

3 2

4 3

1

1

qp p
qp pp
p pp

=
=

=

 

• Set p1 = 1, then p2 1
1 1p
q q

= = . 3 2 2

p pp p
q q

= = . 
2

4 3 2

pp pp
q

= = . 

• 
2 2 2

2 2 2

11 p p q q p p
q q q q

+ + +
+ + + = . Scale all pi by one over this. 

• Thus 
2

1 22 2 2 2

2

3 42 2 2 2

,

,

q qp p
q q p p q q p p

p pp p
q q p p q q p p

= =
+ + + + + +

= =
+ + + + + +

 

Probability of absorption 
• Let a be the state(s) for which we seek the probability that absorption eventually will take place there 

Pr Absoption will (eventually) occur in state Current state is iif a⎡ ⎤⎣ ⎦�  

Note that 
fa = 1 
fi = 0 if i is any absorbing state other than a. 

• Tf f P=  

• Equation for fi involves probabilities on arrows going out of state i. 

,i j i j
j

f f P=∑  

• Ex 
 

1 2 3 4 

q q 

α  
p p 

b a 
β 

1 1 1-β 

1-α 
 



( )

( )

1 2

2 1 3

3 2 4

4 3

1
0

1

1

a

b

a

b

f
f
f f f
f qf pf
f qf pf
f f f

α α

β β

=

=

= + −

= +

= +

= − +

 

• i
i

f∑  do not sum to 1. 

• Pr[eventually absorption occurs at a] = i i
i

p f∑ , where pi’s are calculated without the absorbing state(s). 

Expected time to absorption 

• 
Remaining #transition Just entered 
until absorption state iie E
⎛ ⎞
⎜ ⎟
⎝ ⎠

�  

• ei = 0 if i is an absorbing state. 
• equations: use the out arrow 

( )1 1i i to j j i to j i to j j i to j j
j j j j

e P e P P e P e= + = + = +∑ ∑ ∑ ∑  

• e = (1+e)PT  
• note: put 0 (not 1) in P for Pi,i where i is an absorbing state. (This means row of 0’s for each absorbing 

state.) 

• ( ) 1

11 T T
ne P I P

−

×= −  

Time-Reversed Markov Chains 
• Let nX  be a stationary ergodic Markov chain (an irreducible, aperiodic, stationary Markov chain) with one-

step transition probability matrix ijP p⎡ ⎤= ⎣ ⎦  and stationary state pmf { }jπ . 

The time-reversed process is also a Markov chain with one-step transition probabilities j
ij ji

i

p p
π
π

=�  

Proof. 1 1 1 1

1 1

1 1

1 1 , , ,
1 1

, ,

,

Pr
Pr

Pr
n n n n n n k n k

n n n n k n k

n n n

n

n k n k
n n x x x x x x xn k n k

n n n n n k n k
x x x x xn n

x x x

x

X x p p p
X x X x

p pX x

p

π
π

π
π

− − + + − +

+ + − +

− −

+ +
− −+ +

− − + +

⎡ ⎤=⎣ ⎦⎡ ⎤= = = =⎣ ⎦ ⎡ ⎤=⎣ ⎦

=

"
"

 

Note also that 1 1 ,
1 1Pr n n n

n

x x x
n n n n

x

p
X x X x

π
π

− −
− −⎡ = = ⎤ =⎣ ⎦ . Hence,  

1 1 1 1Pr Prn k n k
n n n n n n n nX x X x X x X x+ +
− − − −

⎡ ⎤= = = ⎡ = = ⎤⎣ ⎦⎣ ⎦ . 



• The forward and reverse process must have the same stationary pmf 

Proof. Since Xn is irreducible and aperiodic, its stationary state probabilities { }jπ  represent the 
proportion of time that the state is in state j. This proportion of time does not depend on whether 
one goes forward or backward in time, so { }jπ  must also be the stationary pmf for the reverse 
process. 

• Another method for finding the stationary pmf of a discrete-time Markov chain: 

Given { }ijp , if we can guess a set of transition probabilities { }ijq  for the reverse process and a pmf { }jπ  so 

that ,i j∀  i ij j jiq pπ π= , then the { }jπ  is the stationary pmf for the Markov chain and the { }ijq  are the 
transition probabilities for the reverse process. 

Proof.  ,i j∀  i ij j jiq pπ π=  ⇒ i∀  j ji i ij i
j j

p qπ π π= =∑ ∑ . Hence, { }jπ  is the stationary pmf. Because 

{ }jπ  is the stationary pmf, j ji
ij

i

p
q

π
π

=  is the transition probability for the reverse process. 

Time-Reversible Markov Chains 
• A stationary ergodic Markov chain is said to be reversible if 

≡ the one-step transition probability matrix of the forward and reverse processes are the same, that is, if 
,i j∀  ij ijp p=� . 

≡  ,i j∀  i ij j jip pπ π=  

(the proportion of transitions from i to j is equal to the proportion of transitions from j to i) 

Proof. Use j
ij ji

i

p p
π
π

=� . 

Discrete-time birth-and-death process 
 

1 2 1i −0 

0 1a =  1a  2a 1ia −

i i+1 

ia  

11 a−  21 a−  31 a− 1 ia− 11 ia +−  
 

• Discrete-time birth-and-death processes are reversible 
Proof. For any sample path, the number of transitions from i to i+1 can differ by at most 1 from the number 

of transitions from i+1 to i since the only way to return to i is through i+1. Thus, the long term 
proportion of transitions from i to i+1 is equal to that from i+1 to i.  ( ), 1 1 1,i i i i i ip pπ π+ + +=  Since these 
are the only possible transitions, it follows that birth-and-death processes are reversible because it 
satisfies  ,i j∀  i ij j jip pπ π= . 



• From , 1 1 1,i i i i i ip pπ π+ + += , we have , 1
1

1, 11
i i i

i i i
i i i

p a
p a

π π π+
+

+ +

= =
−

. Hence 

( ) ( )
1 0

0 0
11 1

j
j j

j

a a
R

a a
π π π−= =

− −

"
"

 where ( ) ( )
1 0

11 1
j

j
j

a a
R

a a
−=

− −

"
"

. 

If 
0

j
j

R
∞

=
∑  converges, 0

0

1

j
j

R
π ∞

=

=

∑
. 


