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• Description: “Blocked-calls lost model” 

• Consider a central exchange with k users (subscribers) sharing c trunks (trunks). 
When k c> , blocking occurs. This is the case of principal interest. 
Assume that the trunks are for long-distance calls to other exchanges, so none of 
the k users speaks over these trunks to any other of the k users. 

• Idle users each generate/initiate calls at rate λ independent, exponential. 
≡ idle users places next call attempt after ( )λE  time passes 

≡ idle users activate ( )λE  

• Busy users speak for ( )µE  durations, independently. 

≡ Busy users deactivate ( )µE  

≡ Active users each terminate calls at rate µ 
• Blocked calls = calls arriving when all c trunks are busy. 
• Blocked calls are “lost”. Users will not try to generate new call attempts 

immediately when blocked (i.e., no retrial/redial). Rather, such an unserviced user 
simply returns to the pool of k c−  idle users who generate new requests for 
service at a combined rate of ( )k c λ− . 

• Let ( ){ } Number of calls in progress at time .

Number of busy trunks at time .

X t t

t

=

=

 

( )0 X t c≤ ≤  

( )k X t−  = number of idle users/subscribers at time t. 

Under our assumptions, ( ){ }X t  is a time-continuous homogeneous Markov chain. 

• Q matrix derivation: 
Suppose there are i active users at time t. 
( )all i of these are still active at time P t dt+  
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Similar reasoning gives ( ), 1i iQ k i λ+ = −  
 

1 2 i-10 

kλ (k-1)λ (k-2)λ (k-i+1)λ 

i i+1 c 

(k-i)λ (k-c+1)λ 

µ 

c-1 

2µ 3µ iµ (i+1)µ cµ 
 

 

i-1

(k-i+1)λ 

i i+1 

(k-i)λ 

iµ (i+1)µ (i-1)µ  
 

( ) ( ) ( )( ) ( )
( )( ) ( )

( ) ( ) ( )( ) ( )1 1 1 1

0 0 0 0 0 0
0 0 0 0

0 0 0 0

0

1 1

0 0 0

0 0 0 0 0 0

1 1

i i k

i i

i i k i k i

i k i

k i k iµ µ λ λ

µ µ λ

µ µ λ λ

λ+ + + − − − −

−
⎛ ⎞

− + − + −⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟−
⎜ ⎟

+ −

⎜ ⎟
⎝ ⎠

+

−

% % %
… …

… …

… …

% % %

 

i i+1 i-1 

i 
i-1 

i+1 

 
• Underlying fact: 

If T1, T2, …, Tn are independent exponential random variable with Tk ~ ( )kαE , 

then, to first order in dt, the probability that the first of these exponential “clocks” to 
go off does so in [0, dt] is ( )1 2 n dtα α α+ + +… . 
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• Dynamic equations: ( ) ( ) ( )p t p t Q t′ =  where ( ) ( )Prip t X t i= =⎡ ⎤⎣ ⎦ . This is 
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Or, equivalently, 
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Either way, we have: 
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• Equilibrium distribution: Truncated binomial: 
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Use c-1 equations of these c+1 equations plus 
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• From #  partitioning, we get 
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• For small values of ρ, this distribution is slanted heavily toward the small values of i.  
It’s unimodal for intermediate values of ρ, and 
it’s slated heavily toward the large values of i for large values of ρ. 
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• Def: [ ]
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Proof. Since the Engsett arrival process is state-dependent and hence not Poisson, 
Engsett arrivals do not see steady-state conditions, so the blocking probability 
is not equal to pc. 
We may assume that steady-state conditions prevail; they will in the long run 
regardless of the value of ρ because we have an irreducible, finite-state time-
continuous chain. 
In the steady state, the value of pi represents the fraction of the time axis 
during which the system is in state i, or equivalently the probability that the 
system is in state i at a “randomly chosen instant.” 
However, the density of calling attempts in the Engsett model varies with the 
state of the system. When in state i, call attempts occur at rate (k-i)λ. 
The fraction of all call attempts that occur when the system is in state i is not 
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Since call attempts get blocked if and only if they occur when the system is in 
state c, the blocking probability is  
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Proof. For j < c < k 
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• Pb = 0 for k = c. 

• If there is only one fewer trunk than subscriber (c = k-1), then 
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• Pb < pc for c < k 

Proof. We want to compare 
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• Caution! Pb ≠ Pr[X(t) = c and next pick-up precedes next hang-up] 
Pr[X(t) = c and next pick-up precedes next hang-up] 
= Pc Pr[U < V | in state c] 

where ( )( )~U k c λ−E , ( )~V cµE , and U   V 
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Erlang Model 
• Definition 

“Infinite” population of users initiates calls at a combined Poisson rate λ regardless 
of how many calls (≤ c) are in progress 
Again 
Blocked calls lost. 
Holding times are i.i.d. ( )µE  
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• State Diagram: 
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Proof 1. 
Vertical dashed line give 
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Proof 1. 
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Proof 2. Because i∀  iλ λ= , we already know that b c cP f p= = . 


