Time continuous, countable state Markov chain

Def: Let s={s,s,,...} be asetof states, and {X (t):t >0} be random variables

such that vVt >0 Pr[X (t) € s] =1 . Suppose also that, for any n and times
t <t,<---<t and states x,X,,...,X,,

Pr|:x ( n+l) Xn+l

future

X(tn):an

X(t)=%,.... X(x,) = xn] = Pr[x (tha) =Xy

past present

when Pr[ X (t,)=x,..., X (t,)=x,]=0.
Then, {X (t)} is a Markov chain (in continuous time).

({X(t)} has Markov property)

e “Given the present, the past and the future become conditionally independent.”
° PX(tm),X(tl)w-vX(tn,l)\X(tn) (i LU i”*1| i”)

- PX(tM)‘X(tn) (I n+1 in ) ' PX(tl)’--'!X(tn—l)‘x(tn) (il’ o in—1| in ) '

Hence, to define a continuous-time Markov chain, need Vs and
Vt>0 Pr[x(s+t)= j‘X(s)zi].

In many application, s will be the non-negative integers or some subset of them; we
assume this holds, unless otherwise specified.

By convention, | X (t) is a right-continuous function,

Notation:

e Transition Probabilities: piyj(s,t):Pr[X(t): j‘x(s):i]
e Time-dependent state probabilities: p;(t)=Pr[ X (t)=i]
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o p(t)=(po(t). pi(t), pz(t),...)T , & FOW Vector.

For 1=(111...)", p(t)I=1,and P(st)I=1
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j0

pl,o(s’t) pl,l(s’t) pl,Z(S’t) -1 _Z(;pl,j(s’t) 1
j=

2p2‘j(s,t)

Every row sums up to 1 because If in s at time s, then have to be somewhere
at time t

Chapman-Kolmogorov equations: P(s,t)=P(s,u)P(u,t) if s<u<t.
Holding time / state occupancy time:

T, =min{t>0: X (t)= X (0)}

Te=min{t>0: X (Ty+...+ T, +t)# X (Ty+...+T )} fork>1
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Property of the state occupancy time: X (t) remains at a given value (state) for an
exponentially distributed random time.
Proof. Assume, X (t,)=i. The Markov property implies that the past (time t <t;) is

irrelevant and we can view the system as being restarted in state i at time t = t,.
Only the exponential random variable satisfies this memoryless property.

Another way of looking at continuous-time Markov chains:

Each time a state, say i, is entered, an exponentially distributed state occupancy time
Ti is selected. When the time is up, the next state j is selected according to a discrete-
time Markov chain, with transition probabilities {;. Then, the new state occupancy

time is selected according to T;, and so on.
We call p, ; an embedded Markov chain.

Def: Transition rate matrix : Q(s)z(qi'j (s))




a) ».q,(s)=0 foralliands
]

b) Ash—0, P(s,s+h)~6,,+q,,(s)h+o(h)

P(s,s+h)

e g ,(s)=Ilim >0 fori=]j.

* 0,(s)= _Zqi,j (s)<0

j=#i

Assume that there exist a matrix Q(s) =g, ;(s)) of continuous functions of time
indexed by pairs (i,j) of states such that
a) Sumineachrow=0: » g, (s)=0 foralliands

j

b) Ash—0, P(s,;s+h)~6,;+q,;(s)h+o(h)

o(h)

, Where function of h o(h) satisfies ngT =0 (approach zero faster than h e.g.
h?)
e Forizj, 0,;=0

Therefore, ij(s) > 0 for i # j. = all non-diagonal element has to be non-negative.
e Since Y q,;(s)=0, q;(s)=—>.a,(s)<0
i j=i
e With this assumption, get the Kolmogorov backward equation:
2P (s.t)=Q(s)P(s.)

e Under slightly more restrictive technical conditions, designed to prevent infinitely
many state transitions from occurring in finite time,

get the Kolmogorov-Feller forward equation:

%P(s,t):P(s,t)Q(t)

o [P'(t)=p(1)Q(t)




Proof. From B(t):B(s)P(s,t), we have %E(t):gg(s)P(s,t) =
0

E(S)EP(S,t). Applying the K-F forward eqn., %P(s,t) =P(s,t)Q(t),

we then have aﬁp(t):g(s)p(s,t)g(t) - p(H)Q(t).

Zpl qlJ Zp| q'J Zp qu
k¢J

Proof.
Goo(t) Gos(t) Goa(t)

P(t)Q(t)=(po(t). Pu(t), P2 (1)) Go(t) Gui(t) do(t)

qZ,O(t) q2,l(t) q2,2(t)

d

[Z P (1) (1), 22 P ()t Zpi(t)qi,z(t)mj:(a Pj(t)J
, where the last equality comes from E' (t)=p(t)Q(t).

Hence, — z p(t)a ;i ( J ) = weighted sum in Q’s column

Zp. )a; ; (t t)q;;(t Zp )a;(t ZQ,k
k¢]

I?ﬁj I¢]

_Zpl q|] Zp q]k
k:ej

I:tj

So we have

Instantaneous rate of
. change of probability :(

Instantaneous flow ofj (Instantaneous flow of ]
of state j

probability into state | probability out of state j

This is why we call Q(t) the transition rate matrix.

So, each column of Q represents the flow-in weight. The j position of the i column
represents the flow-in weight from state j to state i. Note that the i position of the i"
column is negative. Hence, it represents the flow-out from state i to other states. This
makes sense because the sum in each row = 0. The rest of row i shows how much
flow-out weight from state i to each individual states.



Homogeneous, time continuous, countable state Markov chain

e Def: A continuous-time Markov chains {X (t) > O} where all X (t) ’s take values

in a countable state space S (e.g., S ={0, 1, 2, ...}) has homogeneous transition
probabilities iff

Vs Wt>0 [Pr[ X (s+t)=j|X(s)=i]=Pr[ X (t)=j|X(0)=i]=py(t)|

The holding times {T, ol 2} of visits to a particular state i are i.i.d. exponential

random variable with a parameter «; that depends on the state.

o Def: [P(t)= [ P (t)] = the matrix of transition probabilities in an interval of length t.

Note that |P(0) = I| (initial condition) because p; (t)=4(i, j).

o P(st)=P(t-s)
e We consider on “standard” Markov chains, i.e. those in which every p; isa

continuous function of t, with lim P(t) =1.

t—>0"

It turns out that the functions p; are
e uniformly continuous

Proof. First we will show that Vh ‘pij t+h)-p; (t)‘ <1-p;(h).
Note that p; (t+h) Zp,k ) b (t) . Hence,

Zp.k ) Py (1) = by (1)
=1 2P (h) Py (t) |+ pi(h) py (1) = py (1)

ki

= Zplk pkj (pii(h)_l) Pij (t)

ki

Py (t+h)—p; (1)

< g‘p,k(h] (Pi(h)=1)py(t)
= (1= pi(h))+(pa(h)=1) py (1)
)(1-py (1))

=(1-pi(h
(h

<1-p;(h)



Also, p;(t+h)-p,(t [Zp.k Py (t j |pi () =1 py (t)

ki

>0
2 _‘ Pii (h) _1‘ P; (t) = _‘ Pii (h) _1‘
Therefore, ‘pij (t+h)-p; (t)‘ <1-p;(h). So, vx vy
|0y (¥) = Py ()| <1 py |y = x|) . By the continuity of p, (t) and

p: (0)=1, given any % we can find % such that |y — | s% implies

1=,y = X)) == iy x| <=

e continuously differentiable (C*) at all points t > 0.
At t =0, where their left-hand derivatives are not defined, their right-hand
derivatives, denoted by q; = p;(0), also exist.

e Vt20 Vj, p;(t)>0
Proof. The statement is trivial for t = 0 because p;(0)=1>0.Now, lett>0 be

given. Because pj(t) is continuous everywhere and p;(0)=1, 3ne N

such that p;; (t j >% The Chapman-Kolmogorov equation then tells us

t)) _ 1"
that p; (t)> (p”(ﬁj) 25 >0.

e We do not have to consider the possibility of periodicity because the function
p; (t) is always strictly positive.

e Ifi=jand p;(t)>0,then Vt>t, p,;(t)>0
Proof. p;(t)=>p,;(t)p;(t—-t)>0.
>0 >0
e Hence, if i j and p; is not identically zero, then 3t, >0 such that, starting
from state i, it is possible to be in state j at all times subsequent to t, .
e Actually, a sharper result holds:
If p; is not identically zero, it is strictly positive vt >0.

Even if we cannot move directly from i to j, if we can get there somehow, we can
get there in an arbitrary short time.

e Ex. Poisson process.



Ex. Here, T; and T, are i.i.d. O
exponential random
variable. S SR N S—

Chapman- Kolmogorov equation'
pu S +t Z plk ka

P(t+s)=P(s)P(t)=P(t)P(s).
Proof. From Chapman-Kolmogorov equations for general time continuous
Markov chain, P(t,,t,)=P(t,,u)P(u,t,). For homogeneous case, by

letting t, =0,u =s,t, =t +s, we have
hom. - hom
P(t+s) = P(0t+s)= P(0,5)P(s.t+s) = P(s)P(t)
If we observe the chain at times 0, 1, 2, ... only, then P := P(1) can be thought of as

the one-step transition matrix of a discrete time chain;
Proof. Use induction and P(n+1)=P(1)P(n).

For a chain currently in state i, let T denote the time it stays in that state before
moving to a different one. Then, Pr[T >t]=e"t for some ;.

Proof. Given X (t,)=i.Then, for s>0 and t >0, we have
PrT>s+t[T 25|

=Pr[ X (z)=iforty<z<t,+s+t|X(z)=ifort,<z<t +s]
PriX(z)=iforty+s<z<ty+s+t|X(r)=ifort,<z<t,+s

t more
P[ (7)= |fort0+s£rsto+s+t‘x(to+s)
_Pr[ (7)= |fort0+s£r£t0+s+t‘x(t0+s)=i] (Homogeneity)
2t].

So we have Pr[T >s+t] = Pr[T >s+t[T 23]Pr[T >s] =

i] (Markov)

=Pr[T

Pr[T >t]Pr[T > s], the defining property of the exponential distribution.
Thus, Pr[T >t]=e™t for some «;.



e Consider an interval A. Pr[at least one jump occurs before A] = Pr[1* jump occurs
before A]=1-e “* <max (1— e‘“iA).

Pr[ 2" jump before A |

P[lSt jump before AJ P[Z”d jump before A

1% jump before A] :

Pr[znd jump before A

1 jump before A] = max (1— e (A”)) < max (1— e"”iA) , where
ris the time till the first jump.

Hence, Pr[ 2" jump before A ] < (m;’:tx(l—e‘”"A))2 =(1-e )2 where & = maxa .
Note that (1-e )2 = (oA + o(A))2
Pr[2nd jump before A]

= (@A)’ +2aA0(A) +0(A?) = 0(A?). Hence,

= o(AZ). Thus, for small A, can disregard the second jump.

0
(0+t)— p.
Iirpp”( )t it i nmp”t() i
. ' t—0° t—0"
o Def: q; =p;(0)= . = oy ()1
mp"(+)tm i= | I =
t—>0"

It can be shown that every g; with i j is automatically finite,

but if the state space S does not have finitely many states, it may happen that

g; = —o. (We shall not consider such models.)

Properties:

e (0L pIJ

)<1, Zpu

e Chapman-Kolmogorov equatlon

=1, p;(0)=1, P(s,t)=P(

t-s).

p;(s+1) Zp,k )P (t), P(t+s)=P(s)P(t)=P(t)P(s).
o P(t+t,+--+t)=P(t)P(t,)--P(t,),
P (t + 8+ 1) > Py (t) Py (t)- Py (1))
| i i
e Q)=Q=[g,] = aconstant matrix. q; = p;(0)= " " (?—1 ~ j.




. Zq” =0,ie., q; :_zqij .
j

ji

git+o(t) i#]
* pij(t):{1+q“t+o(t) i=j

° P'(t):QP(t)ZP(t)Q, %p,— (t):Zqij pi(t)

e (i =—q.
N T
[ ] Ij___—
¢ Zqik
k=i
Q2t2 Q3t3
e P(t)=exp(Qt)=1+0Qt+ TN

Zqij =0
j

(S - _
Proof. Note that Z pij (5) =1. Hence, lim (Z pué(‘ )+ Pii (i) 1
i 50" =i

implies > q; +0; = >_¢; =0. (When the sum has finitely many terms,
ji j
we can always interchange the order of limit and sum. Even when s is

infinite, we consider only chains in which this “conservative” condition
holds.

Derivation 1
By definition of derivative,

(0= 9,(0)+ 7 (010-0)+o(t-0) |

The quantity then can be interpreted as —q; the rate at which a process now in state i
departs from that sate. Similarly, for i = j, g; is the rate at which we jump to j, when

we are now in i.
We have shown that for a chain currently in state i, the time it stays in that state
before moving to a different one is €(«; ). We will show later that p’(0) = p;;(0);

J:O.This

git+o(t) i=j
1+qgt+o(t) i=j

~to;

hence, p;(0)= %e = —a,. Therefore, we must have —a;, =g .
t=0

The chain develops by remaining in its current state i for a random time , then
jumping to j =i with probability i If we ignore how long is spent in each state,
and just look at the sequence of movements from state to state, the process we
observe is called the jump chain.



e Note:|p; (t)— p; (t)=0(t?)
Given X (t,) =i, let p(t) = Pr[ X(t) is till in state i for at least t more time unit | =
Pr[x(t0 +7) =i for OSTS'[‘X(tO)Z i} = e =1-at+o(t). However, p;(t) =

Pr[X (t) isin state i after t time unit] = 1+q;t+o(t). If there is any jump at all in

the process of going from i — i in the interval t, then, there has to be at least two
jumps (i to a state, and then back.) The probability of at least two jumps in the

interval t is o(tz) . The probability that those jumps come back to i is even less than
this. Hence, the probability of going from i — i with any jump is also o(tz) . The
probability of going from i — i without any jump is then p-(t) = p; (t) —o(tz) . So,
P (t)— pi (t) = o(tz). This implies p’(0)=p;(0).

e Derivation 2

Consider the transition probabilities in a very short time interval of duration o.
Assume that X (to) =i.We know that the state occupancy time for all continuous-

time Markov chains are exponentially distributed; hence the probability that the
process remains in state i during the interval is Pr[x (t)=it, <t<t +5|X(t,) = i]

50

= p,;(6) = e =1-g5+0(5) for some «;. (Iim@:OJ. Therefore,

1-p;(6) =6 +0(5). We then regard ¢ as the rate at which the process X (t)
leaves state i.
Once the process leaves state i, it will enter state j with probability p;. Thus,

p; (8)=(1-pi(8)) By =(ad +0(8)) By =5 p; +0(5).
Define, for i j, g; =, p; as the rate at which the process X (t) enters state j from
state i. For completeness, define g, =—¢; . Then,
pi(0)—1=0q,0+0(5),and p;(5)=0;5+0(5).
And

P ()

-1 .
=q;, and LI_%T =0;-

 Kolmogorov backward and forward equations: P'(t)=QP(t)=P(t)Q

Proof. By Chapman-Kolmogorov equation

P(t+h)—P(t)=P(h)P(t)-P(t)=(P(h)-1)P(t).

Hence, lim P(t+ hg_ P(Y) = ( lim M]P(t) =QP(t). (backward)

h—0"




(“Backward” because we look back in time to the rates of transition at

time zero.)
Similarly,
P(t+h)-P(t)=P(t)P(h)-P(t)=P(t)(P(h)-1).
Hence, hILT P(t+ hg ~P(Y = P(t)[hILr? %J =P(t)Q . (forward)

Note that we assume the interchange of limit and sum is justifiable.
(Always in the case of finite number of states.)
Note that the formal justification needs careful analysis.
242 343
Qt? Q'
2! 3!

The formal solution is P(t) =exp(Qt)=1+Qt+

p'(t) = p(t)Q. Equivalently, %pj (t)= Zqij pi(t).

Proof. p(t)=p(0)P'(t) = p(0)P(1)Q=p(1)Q
Alternative proof.

p(t+h)—p(t)=p(t)P(h)-p(t)=p(t)(P(h)-T1)

p'(t) = lim E(th_g(t) =E(t)£|im —P(hr?_ | j= p(t)Q

h—0*

The Q is analogous to the one-step transition matrix P of homogeneous time-discrete
Markov chains.

Jump Chains

Time-discrete Markov chain embedded in a time-continuous Markov chain

The jump chain has same state space S as corresponding continuous chain does,
and its state diagram has the same arrows, but not the same arrow labels.

Jump chain’s discrete time advances by 1 every time the corresponding
continuous-time changes state.

kN
Pij =19 —0;
0 otherwise

ifi# |

Example



_*
a++
5, 1

P(X (k): Z‘X (k—l):l): P(le <Tys T <T14)

Il
Ot 8 O 8 O—=§

ae P(T; >t, T, >t)t

ae P(T; >t)P(T,, >t)t

_*
a+pf+y
P(X (k) :1‘X (k-1)= 4) =1 since only one arrow out of state 4

ae e e dt =

Def: {p,} = the stationary state pmf of the Markov chain. p =(p,, pz,...)T :

Global balance equations: At “equilibrium” (or “steady state”)
Vj Zqij P, =—q; ;| or equivalently, un P, :qukpj ,

i#] i#] k#j

At “equilibrium” (or “steady state”), p;(t)— p; and pj(t) — 0; hence, from
%pj (1) :Zi:qij p; (t), we have Z‘q” p, =0. From g, :_;qjk , We have
Zqij P =;qij P +0;P, =;qu P —gjqjkloj =0.
“the rate of probability flow out of state j, namely “—q;p;”, is equal to the rate of
flow into state j, “ > g, p, ”.

i#]
By solving this set of linear equations (With condition Z p; :1] we can obtain the
i

stationary state pmf of the system (when it exists.)



e If we start the Markov chain with initial state pmf given by p, then the state

probabilities will be Vi vt p;(t)= p;. The resulting process is a stationary random
process.

Let £ =(t,t,,....,t,) where t; <t . Then,

i+1°

Markov

PriX(f+7)=x] = Pr[X(t0+r)=x0]ﬁPr[ X(t+7)=x|X(t+7)=x,].

By homogeneity, Pr[ (t+7) ‘X t,+7)=X ] P (G =1y).

Since Vi Vt p,(t)=p,, we have Pr[ X (t,+7)=x,]=p, .

Hence, Pr[X(t+r ] pxol_[pxl1X —t, Pr[)?(f):ﬂ

e Asubset B of the state space S is closed for {X (t)} if
Vs p,;(s)=0ificBand j¢B
— can’t get out once you’re in

. {X (t)} is irreducible / indecomposable if S itself is the smallest non-empty set
closed for {X (t)}

e In that case, the entire state space S is a communicating class in the sense that
Vie S VjeS 3s such that pij(s) > 0.
e Anprobability measure p on S is invariant (is an “equilibrium measure”) if

p=pP(z) forall 7= p(t) not depends on ()
where P(z)=P(s,5+7).
o If {X(t)} isirreducible,

there exists at most one invariant measure.

e p isinvariant in the homogeneous case if and only if pQ =0

= Vi > Pt~ P4 =0

i#] K+ j

homogeneous

Proof. We know that S p(t)= p(t)Q(t) = p(t)Q. For p(t) tobe

invariant, must have %E(t) =0.S0, p(t)Q=pQ=0

e Thisisanalogousto p= pP where P is a 1-step transition matrix of
homogeneous discrete-time Markov chain.




Limiting Probabilities for Continuous-Time Homogeneous Markov
Chains

A continuous-time Markov chain X (t) can be viewed as consisting of a sequence of
states determined by 1) some discrete-time Markov chain X, with transition
probabilities p; and 2) a corresponding sequence of exponentially distributed
(£(a;)) state occupancy times.

If the associated discrete-time chain X, (governed by [pij]) is irreducible and
positive recurrent with stationary pmf 7, then the long-term proportion of time spent
by X(t) instate i is

T
a.

P =

i
i
1
i
i &

1. . .
where — is the mean occupancy time In state I.

Q;

Further more, the p,’s are the unique solution to the global balance equations Vj
Zqij P = _qjj pj .

i)

Proof.

Suppose that the embedded Markov chain X, is irreducible and positive
recurrent. Then we can find 7;’s, the unique solution of Vj r; = Z”i Py

and 1= Z”i . Note that one time step of the embedded Markov chain

denote one transition (jump) of the original continuous-time Markov
process.

Let N;(n) denote the number of times state i occurs in the first n

-y H 1 7 11 N| (n)
transitions. Then the portion of “jump” to state i is ——=. Because the
n

process is irreducible and recurrent, proportion of “jump” to state i — ;.

. - . N;(n
So we have, with probability one, I|mL = 7, . Note also that

n—oo n

limN;(n)=co.

n—oo




Let T,( j) denote the occupancy time the j* time state i occurs. (Ti ( j))il

are then an iid sequence ~ £(¢; ) . Hence, by the strong law of large
N; (n) 1

ZT, =E[T.(j)]= —.

numbers, with probability one, Iim )
n—w i n
(

N; (n)
T.(J)
= time spent in all states ()

2. 2. Ti(i)

tim nt in state i . -
e spe state _lim ,%

Ni n 1 N(n) .
0 N(n) &
_nl—[ro]o N (n) 1 (n)
i Ti H
iz n N;(n) = (J)
We know that, with probability one, lim I(n)—ﬂ'i and
n—ow n
1
N; () ﬂig
=—.H .
n—moN = | | ence, p| ﬂ_i
-

1 ~ .
Let c=) z,—.From 7, = 7P, , substitute 7, = p,r,c, We then have

pjaj)c/ = z piaiﬁ/ﬁij . Note that p; =0. Hence, Z Piex; By ZZ picx; By -

i#]

Now use q; =—¢;, and P, = R} , we then have —p,q, = > p,g; , t
o

i i#]

global balance equation. Thus, the p,’s satisfy the global balance
equations.

Now, fix i € S and define

T,=min{t>0:X (t) =i}

T =min{t>0: X (T, +t)=i} = duration of first sojourn from state i and back.



---------------- R R

 — — —
o € -oneennooe oo —0 -
. D — T .

Ty

e GivenX(0)=i,Ti~&a), a=—qi>0= g, . ET:= 1
j# M
o Define M; =E[T|X (0)=i]
e Independent of p(0)
i pi( ): (_q" )71 ] :{equilibrium distribution if ergoc_iic.
o M, +(-a;) 0 otherwise

Example 1:

%4 o
. ForS:{l,Z},supposeQ:[lB ]wherea>0 and 8>0.

(%4

P'(t)=P(t)Q= P(t){ p _aﬂ} hence,

p:[l(t) =-a pll(t) + Py, (t) =-a pll(t)+ﬂ(1_ pll(t))
= —(a+pB)pu(t)

With the initial condition p,(0)=1, we have p,,(t)= ﬂﬂ+Lﬂe(‘”ﬂ)‘.
a+fB a+

s L _gterr,
a+pf a+pf

P2 (t) =1- pll(t) ) p21(t) =1-p, (t) :
The limiting behavior of P(t) is immediate and should be no surprise. The quantity

a and Sare the rates of getting out of states 1 and 2 respectively, moving to the other
state, so in the long run, the respective chances of being in 1 and 2 will be

. p a
roportional to e and S. Thus, p,(t) > ———, p,(t .
prop aand f p.l()—>a+ﬁ pz()—>a+ﬂ

By symmetry, p,,(t)=




_ 1 a0 0 1 al
We can write Q:{1 —ﬁ}{o _(OHﬂJL —,B} .

242 343
Then, P(t):I+Qt+Q2f +QTf+
242 343
=A I+Dt+Dt +Dt +~~-]A‘l
2! 3!
1 0
A ( )) AF 0 }A_l
- < OH‘ﬂ (atp)t
0 0 e

Example 2: Birth-and-death process

e Def: Birth-and-death process is a Markov chain in which only transitions between
adjacent states occur.

! AO i E | i ﬂ? %
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A o -
o lLetr = p R =rr_-r forj=1,2, ... Also, let Ry=1.Then, if ) R,
i j=0
converges, then the stationary pmf is given by p, = OCR‘ . If the series does not

2R
=0

converges, then a stationary pmf does not exist, and Vi p, =

e The global balance equations are
JoPy = Py, and (A + 4,) Py = APy + My Py, TOrj=1,2, ...
We can rewrite the second equation as follows:
AP = Mg = A4 Pj —u;p; forj=1,2, ..., which implies that

AP —u;p; =k, aconstantforj=1,2, ...

The case when j =1 gives A,p, — 4 p, = k . However, we already know that
Ao Py = 44, p, - Hence, k = 0, and therefore,




ﬂ'j—lpj—l_ﬂj P; =0

_ /11'71 _
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Aia )
, Where r=— forj=1,2,....
Hi
By simple induction argument, p; =r;r;;---1,p,.

If we define R, =r;r,,---r,,and R, =1, then p, =R,p, forj=0,1,2, ....

From )’ p, =1, we require p, = 1

e iRj |

=0

o Sufficient condition for ergodicity is ZRJ. < o0,
j=0

Example 3: Truncated birth-and-death process
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A
e Letr, =2 and Ry=rr_ -1 forj=12 ..., c Also,let Ry=1.Then, the
H;

stationary pmf is given by p, = R

R.

J

C
j=0

e The argument follows exactly the argument used in the birth-and-death process

except the last step which requires Z p; =1 instead of Z p; =1. Note that the sum

j=0 j=0
is finite, and hence, always converges.

[ ] F)b = CACRC
SR
j=0

Proof. In the steady state, the value of p; represents the fraction of the time axis
during which the system is in state i, or equivalently the probability that
the system is in state i at a “randomly chosen instant.” However, the
density of calling attempts varies with the state of the system. When in
state i, call attempts occur at rate A . Hence, The fraction of all call

AfViA=A4,thenl) Vi f,=p, 2)B =1 =p..




attempts that occur when the system is in state i is not p; but rather
AP
fi=—"1-—

2. AP,
=0

system is in state c, the blocking probability is

. Call attempts get blocked if and only if they occur when the

A, CRC
2 « AR
B=f =P ZOR L
iP; Zﬂ“l c J Zﬂ’IRJ
j=0 j=0 j=0

State diagram and Balance

e Arrows represent probability transition rates, not transition probabilities.
e Global balance
LetS=AuBand AnB=9

Can get global balance equation by equating flow from A to B to flow from B to A:

Z PiGi; = Z Pili ;
A

e Suppose A = {k}
B=S-{k}={j:j=k}



Then, global balance equation becomes z Py = Z p,g;, which is precisely
j=k i=k
the k™ equation in pQ =0.
e Some “global” balance looks very “local”

A

Local Balance
Consider:

Cutting both links between states 1 and 2 partitions the state spaces in to {1} and
{2,3,4,5}. Hence, the local balance equations pi0: » = p202,1 must hold.

But, cutting both links between 4 and 5 doesn’t partition, so ps4Q4 5 may not
necessarily equal to psQs 4.

If a solution {p,,i eS| =p can be found that satisfies the local balance equations for
all pairs of states,

then this p satisfies the global balance equations and hence is an equilibrium
distribution.




If each red arrow flow is equal to the corresponding magenta flow, then the sum
of red flow is equal to the sum of magenta flow.

¢ Insuch instances, need
{{gij >0 and qg;; > 0} or gij = g = 0} V(i,))

=0ij>0¢q;i>0

thus, can’t have

e When there exists a solution to the set of all local balance equations, the Markov
chain is reversible.

Time-Reversible Continuous-Time Markov Chains

e Consider a stationary, continuous-time Markov chain.
e The reverse process also spends an exponentially distributed amount of time with rate
a, in state i.

Proof.
Let T; be the forward process’s state occupancy time for state i.

)]

~ Pr[X (t—7)=i,X(t")=i for at least  more time unit]
- Pr{ X (t)=i]
Pr =i |Pr[T,>7]

= =Pr|T.>¢
Pr =1 [ ]

o X (') =i at least for 7 more time unit
.

in the reversed direction (t —7<t'< t)

Note that Pr[ X (t—z)=i]=Pr[ X (t)=i] by the stationaryness of the
process.




e The jumps in the forward process X (t) are determined by the embedded Markov
chain p;, so the jumps in the reverse process are determined by the discrete-time

Markov chain corresponding to the time-reversed embedded Markov chain given by
7Py

T

'oz)

e The transition rates for the time-reversed continuous-time process are given by

q' :_q“
P

3 7| / /
7TiPj 7T; 9; %‘ Z Q P,

Proof. G, =a;p; =, g L

P q,.——’ 0 -

e If we can guess a set of transition rates {qij} and a pmf {pj} such that

Vi, j pa; =p,q; and Vi >0, =D ¢;(=«), then {pj} is the stationary pmf for

j#i j#i

X (t) and {qij} are the transition rates for the reverse process.

e The continuous-time Markov chain X (t) is reversible
= its embedded Markov chain is reversible
= Vi) pd;=pa;
(The rate at which X (t) goes from state i to state j is equal to the rate at which
X (t) goes from state j to state i).

Proof. Since the state occupancy times in the forward and reverse processes are
exponential random variables with the same mean,

the continuous-time Markov chain X (t) is reversible if and only if its
embedded Markov chain is reversible, i.e., Vi, j 7,p; = 7;p; where {7} is
the stationary pmf of the embedded Markov chain. Now, recall that the

stationary pmf X (t), p, = iz where ¢ = Z—IS]UStaCOHStaI’]t So,
Ca T~ a

7Py =7, Py isequivalentto pa; Py = p;e;P; - Now, use @; = o ;. We then
have piqij = quji'
e All continuous-time birth-and-death processes are time-reversible.

Proof. The embedded Markov chain is a discrete-time birth-and-death process which
is time-reversible.




