
Time continuous, countable state Markov chain 

• Def:  Let { }1 2, ,s s= …S  be a set of states, and ( ){ }: 0X t t ≥  be random variables 

such that 0t∀ ≥  ( )Pr 1X t ∈ =⎡ ⎤⎣ ⎦S  . Suppose also that, for any n and times 
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when ( ) ( )1 1Pr , , 0n nX t x X t x= = ≠⎡ ⎤⎣ ⎦… . 

Then, ( ){ }X t  is a Markov chain (in continuous time). 

( ( ){ }X t  has Markov property) 

•  “Given the present, the past and the future become conditionally independent.” 

• ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1, , , , , ,

n n n n n nX t X t X t X tP i i i i
+ − + −… …  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 11 1 1, , , ,

n n n nn n n nX t X t X t X t X tP i i P i i i
+ −+ −= ⋅ … … . 

Hence, to define a continuous-time Markov chain, need s∀  and 
0t∀ ≥ ( ) ( )Pr X s t j X s i⎡ ⎤+ = =⎣ ⎦ . 

• In many application, S  will be the non-negative integers or some subset of them; we 
assume this holds, unless otherwise specified. 

• By convention, ( )X t  is a right-continuous function. 

• Notation: 

• Transition Probabilities: ( ) ( ) ( ), , Pri jp s t X t j X s i⎡ ⎤= = =⎣ ⎦  

• Time-dependent state probabilities: ( ) ( )Prip t X t i= =⎡ ⎤⎣ ⎦  
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• ( ) ( ) ( ) ( )( )0 1 2, , ,
T

p t p t p t p t= … , a row vector. 

• ( ) ( ) ( ),p t p s P s t=  

• For ( )1 1,1,1, T=
K

… , ( )1 1p t =
K

, and ( ), 1 1P s t =
K K

 

Proof. 
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Every row sums up to 1 because If in s at time s, then have to be somewhere 
at time t 

• Chapman-Kolmogorov equations: ( ) ( ) ( ), , ,P s t P s u P u t=  if s u t< < . 

• Holding time / state occupancy time:  
( ) ( ){ }0 min 0 : 0T t X t X= > ≠  

( ) ( ){ }0 1 0 1min 0 :k k kT t X T T t X T T− −= > + + + ≠ + +… … for k ≥ 1 
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• Property of the state occupancy time: ( )X t  remains at a given value (state) for an 

exponentially distributed random time. 
Proof. Assume, ( )0X t i= . The Markov property implies that the past ( )0time t t<  is 

irrelevant and we can view the system as being restarted in state i at time t = t0. 
Only the exponential random variable satisfies this memoryless property. 

• Another way of looking at continuous-time Markov chains: 
Each time a state, say i, is entered, an exponentially distributed state occupancy time 
Ti is selected. When the time is up, the next state j is selected according to a discrete-
time Markov chain, with transition probabilities ijp� . Then, the new state occupancy 
time is selected according to Tj, and so on. 
We call ,i jp�  an embedded Markov chain. 

• Def: Transition rate matrix : ( ) ( )( ),i jQ s q s=  



a) ( ), 0i j
j

q s =∑  for all i and s 

b) As h → 0, ( ) ( ) ( ), , ,, ~i j i j i jP s s h q s h o hδ+ + +  

• ( ) ( )
,
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= ≥  for i ≠ j. 

• ( ) ( ), , 0i i i j
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≠
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Assume that there exist a matrix ( ) ( )( ),i jQ s q s=  of continuous functions of time 
indexed by pairs (i,j) of states such that 
a) Sum in each row = 0: ( ), 0i j

j
q s =∑  for all i and s 

b) As h → 0, ( ) ( ) ( ), , ,, ~i j i j i jP s s h q s h o hδ+ + +  

, where function of h o(h) satisfies ( )
0
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Therefore, qi,j(s) ≥ 0 for i ≠ j. ⇒ all non-diagonal element has to be non-negative. 
• Since ( ), 0i j

j

q s =∑ , ( ) ( ), , 0i i i j
j i

q s q s
≠

= − ≤∑  

• With this assumption, get the Kolmogorov backward equation: 

( ) ( ) ( ), ,P s t Q s P s t
s
∂

=
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• Under slightly more restrictive technical conditions, designed to prevent infinitely 
many state transitions from occurring in finite time, 
get the Kolmogorov-Feller forward equation: 

( ) ( ) ( ), ,P s t P s t Q t
t
∂

=
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• ( ) ( ) ( )p t p t Q t′ =  



Proof. From ( ) ( ) ( ),p t p s P s t= , we have ( ) ( ) ( ),p t p s P s t
t t
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, where the last equality comes from ( ) ( ) ( )p t p t Q t′ = . 

Hence, ( ) ( ) ( ),j i i j
i

d p t p t q t
dt

=∑  ⇒ weighted sum in Q’s column 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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, , , ,

, ,
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So we have 

• 
Instantaneous rate of

Instantaneous flow of Instantaneous flow of
change of probability 

probability into state probability out of state 
of state 

j j
j
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This is why we call Q(t) the transition rate matrix. 
So, each column of Q represents the flow-in weight. The jth position of the ith column 
represents the flow-in weight from state j to state i. Note that the ith position of the ith 
column is negative. Hence, it represents the flow-out from state i to other states. This 
makes sense because the sum in each row = 0. The rest of row i shows how much 
flow-out weight from state i to each individual states. 



Homogeneous, time continuous, countable state Markov chain 

• Def: A continuous-time Markov chains ( ){ }, 0X t t ≥ where all ( )X t ’s take values 

in a countable state space S (e.g., S = {0, 1, 2, …}) has homogeneous transition 
probabilities iff 

≡  s∀  0t∀ ≥  ( ) ( ) ( ) ( ) ( )Pr Pr 0 : ijX s t j X s i X t j X i p t⎡ ⎤ ⎡ ⎤+ = = = = = =⎣ ⎦ ⎣ ⎦ . 

≡  The holding times { },1 ,2, ,i iT T …  of visits to a particular state i are i.i.d. exponential 

random variable with a parameter αi that depends on the state. 

• Def: ( ) ( )ijP t p t⎡ ⎤= ⎣ ⎦  = the matrix of transition probabilities in an interval of length t. 

Note that ( )0P I=  (initial condition) because ( ) ( ),ijp t i jδ= . 

• ( ) ( ),P s t P t s= −  

• We consider on “standard” Markov chains, i.e. those in which every ijp  is a 

continuous function of t, with ( )
0

lim
t

P t I
+→

= . 

It turns out that the functions ijp  are 

• uniformly continuous 
Proof. First we will show that h∀ ( ) ( ) ( )1ij ij iip t h p t p h+ − ≤ − . 

Note that ( ) ( ) ( )ij ik kj
k

p t h p h p t+ =∑ . Hence, 
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Also, ( ) ( ) ( ) ( ) ( ) ( )
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Therefore, ( ) ( ) ( )1ij ij iip t h p t p h+ − ≤ − . So, x∀ y∀  

( ) ( ) ( )1ij ij iip y p x p y x− ≤ − − . By the continuity of ( )iip t  and 

( )0 1iip = , given any 1
m

, we can find 1
n

 such that 1y x
n

− ≤  implies 

( )1 iip y x− −  ( )1 iip y x= − −  1
m

≤ . 

• continuously differentiable (C1) at all points t > 0. 
At t = 0, where their left-hand derivatives are not defined, their right-hand 
derivatives, denoted by ( )0ij ijq p′= , also exist. 

• 0t∀ ≥  j∀  , ( ) 0jjp t > . 

Proof. The statement is trivial for t = 0 because ( )0 1 0jjp = > . Now, let t > 0 be 

given. Because ( )jjp t  is continuous everywhere and ( )0 1jjp = , n∃ ∈`  

such that 1
2jj

tp
n

⎛ ⎞ ≥⎜ ⎟
⎝ ⎠

. The Chapman-Kolmogorov equation then tells us 

that ( ) 1 0
2

n n

jj jj
tp t p
n

⎛ ⎞⎛ ⎞≥ ≥ >⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

• We do not have to consider the possibility of periodicity because the function 
( )jjp t  is always strictly positive. 

• If i j≠  and ( )0 0ijp t > , then 0t t∀ ≥  ( ) 0ijp t > . 

Proof. ( ) ( ) ( )0 0

0 0

0ij ij jjp t p t p t t
> >

≥ − >
�	
��	�


. 

• Hence, if i j≠  and ijp  is not identically zero, then 0 0t∃ >  such that, starting 
from state i, it is possible to be in state j at all times subsequent to 0t . 

• Actually, a sharper result holds: 
If ijp  is not identically zero, it is strictly positive 0t∀ > .  

Even if we cannot move directly from i to j, if we can get there somehow, we can 
get there in an arbitrary short time. 

• Ex. Poisson process. 



• Ex. Here, T1 and T4 are i.i.d. 
exponential random 
variable. 
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• Chapman-Kolmogorov equation:  

( ) ( ) ( )ij ik kj
k

p s t p s p t+ =∑ , 

( ) ( ) ( ) ( ) ( )P t s P s P t P t P s+ = = . 

Proof. From Chapman-Kolmogorov equations for general time continuous 
Markov chain, ( ) ( ) ( )1 2 1 2, , ,P t t P t u P u t= . For homogeneous case, by 
letting 1 20, ,t u s t t s= = = + , we have  

( ) ( ) ( ) ( ) ( ) ( )
hom. C-K hom.

0, 0, ,P t s P t s P s P s t s P s P t+ = + = + =  

• If we observe the chain at times 0, 1, 2, … only, then ( ): 1P P=  can be thought of as 
the one-step transition matrix of a discrete time chain;  

Proof. Use induction and ( ) ( ) ( )1 1P n P P n+ = . 

• For a chain currently in state i, let T denote the time it stays in that state before 
moving to a different one. Then, [ ]Pr iT t e tα−≥ =  for some iα . 

Proof. Given ( )0X t i= . Then, for 0s ≥  and 0t ≥ , we have  

Pr T s t T s⎡ ≥ + ≥ ⎤⎣ ⎦  

( ) ( )

( ) ( )

0 0 0 0

0 0 0 0

 more

Pr  for  for 

Pr  for  for 
t

X i t t s t X i t t s

X i t s t s t X i t t s

τ τ τ τ

τ τ τ τ

⎡ ⎤= = ≤ ≤ + + = ≤ ≤ +⎣ ⎦
⎡ ⎤
⎢ ⎥= = + ≤ ≤ + + = ≤ ≤ +
⎢ ⎥⎣ ⎦
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( ) ( )0 0 0Pr  for X i t s t s t X t s iτ τ⎡ ⎤= = + ≤ ≤ + + + =⎣ ⎦  (Markov) 

( ) ( )0 0 0Pr  for X i t s t s t X t s iτ τ⎡ ⎤= = + ≤ ≤ + + + =⎣ ⎦  (Homogeneity) 

[ ]Pr T t= ≥ . 

So we have [ ]Pr T s t≥ +  = [ ]Pr PrT s t T s T s⎡ ≥ + ≥ ⎤ ≥⎣ ⎦  = 

[ ] [ ]Pr PrT t T s≥ ≥ , the defining property of the exponential distribution. 

Thus, [ ]Pr iT t e tα−≥ =  for some iα . 



• Consider an interval ∆ . Pr[at least one jump occurs before ∆ ] = Pr[1st jump occurs 
before ∆ ] = ( )1 max 1i i

i
e eα α− ∆ − ∆− ≤ − .  

ndPr 2  jump before ⎡ ⎤∆⎣ ⎦  

st nd st1  jump before 2  jump before 1  jump before P P ⎡ ⎤⎡ ⎤= ∆ ∆ ∆⎣ ⎦ ⎣ ⎦ . 

( )( ) ( )nd stPr 2  jump before 1  jump before max 1 max 1j j

j j
e eα τ α− ∆− − ∆⎡ ⎤∆ ∆ = − ≤ −⎣ ⎦ , where 

τ is the time till the first jump.  

 Hence, ndPr 2  jump before ⎡ ⎤∆⎣ ⎦  ≤ ( )( ) ( )
2 2

max 1 1i

i
e eα α− ∆ − ∆− = −  where max ii

α α= . 

Note that ( ) ( )( ) ( ) ( ) ( ) ( )2 2 2 2 21 2e o o o oα α α α− ∆− = ∆ + ∆ = ∆ + ∆ ∆ + ∆ = ∆ . Hence, 

( )nd 2Pr 2  jump before o⎡ ⎤∆ = ∆⎣ ⎦ . Thus, for small ∆ , can disregard the second jump.  

• Def: ( )

( ) ( )
0

0 0
lim

0

ij ij

t
ij ij

p t p

q p
+→

+ −

′= =

( ) ( )

0

0

0 0
lim ii ii

t

i j
t

p t p
+→

≠

+ −

( )

( )
0

1

0

lim

1
lim

ij

t

ii

t

p t
i j

t
p t

i j
ti j

t

+

+

→

→

⎧
⎧⎪

≠⎪⎪⎪ ⎪=⎨ ⎨
−⎪ ⎪ =⎪ ⎪⎩=⎪⎩

.  

• It can be shown that every ijq  with i j≠  is automatically finite, 

but if the state space S  does not have finitely many states, it may happen that 
iiq = −∞ . (We shall not consider such models.) 

• Properties:  

• ( )0 1ijp t≤ ≤ , ( ) 1ij
j

p t =∑ , ( )0 1jjp = , ( ) ( ),P s t P t s= − . 

• Chapman-Kolmogorov equation:  

( ) ( ) ( )ij ik kj
k

p s t p s p t+ =∑ , ( ) ( ) ( ) ( ) ( )P t s P s P t P t P s+ = = . 

• ( ) ( ) ( ) ( )1 2 1 2n nP t t t P t P t P t+ + + =" " , 

( ) ( ) ( ) ( )1 2 1 2ii n ii ii ii np t t t p t p t p t+ + + ≥" "  

• Q(t) = Q = ,i jq⎡ ⎤⎣ ⎦  ⇒  a constant matrix. ( )

( )

( )
0

0

lim
0

1
lim

ij

t
ij ij

ii

t

p t
i j

tq p
p t

i j
t

+

+

→

→

⎧
≠⎪⎪′= = ⎨

−⎪ =⎪⎩

. 

( )
0

lim
t

P t I
Q

t+→

−
= . 



• 0ij
j

q =∑ , i.e., ii ij
j i

q q
≠

= −∑ . 

• ( ) ( )
( )1

ij
ij

ii

q t o t i j
p t

q t o t i j
+ ≠⎧⎪= ⎨ + + =⎪⎩

 

• ( ) ( ) ( )P t QP t P t Q′ = = , ( ) ( )j ij i
i

d p t q p t
dt

=∑  

• ii iq α= − . 

• ij ij
ij

i ik
k i

q q
p

qα
≠

= =
∑

�  

• ( ) ( )
2 2 3 3

exp
2! 3!

Q t Q tP t Qt I Qt= = + + + +"  

• 0ij
j

q =∑  

Proof. Note that ( ) 1ij
j

p δ =∑ . Hence,
( ) ( )

0

1
lim 0ij ii

j i

p p
δ

δ δ
δ δ+→ ≠

⎛ ⎞−
+ =⎜ ⎟

⎝ ⎠
∑ . This 

implies 0ij ii ij
j i j

q q q
≠

+ = =∑ ∑ . (When the sum has finitely many terms, 

we can always interchange the order of limit and sum. Even when S  is 
infinite, we consider only chains in which this “conservative” condition 
holds. 

• Derivation 1 
By definition of derivative, 

( ) ( ) ( )( ) ( ) ( )
( )

0 0 0 0
1

ij
ij ij ij

ii

q t o t i j
p t p p t o t

q t o t i j
+ ≠⎧⎪′= + − + − = ⎨ + + =⎪⎩

. 

The quantity then can be interpreted as iiq−  the rate at which a process now in state i 
departs from that sate. Similarly, for i j≠ , ijq  is the rate at which we jump to j, when 
we are now in i. 
We have shown that for a chain currently in state i, the time it stays in that state 
before moving to a different one is ( )iαE . We will show later that ( ) ( )0 0iiiip p′ ′= ; 

hence, ( )
0

0 it
ii i

t

dp e
dt

α α−

=

′ = = − . Therefore, we must have i iiqα− = . 

The chain develops by remaining in its current state i for a random time , then 

jumping to j i≠  with probability ij

ii

q
q−

. If we ignore how long is spent in each state, 

and just look at the sequence of movements from state to state, the process we 
observe is called the jump chain. 



• Note: ( ) ( ) ( )2
iiiip t p t o t− =  

Given ( )0X t i= , let ( )iip t  = ( )Pr  is till in state  for at least  more time unitX t i t⎡ ⎤⎣ ⎦  = 

( ) ( )0 0Pr  for 0X t i t X t iτ τ⎡ ⎤+ = ≤ ≤ =⎣ ⎦  = i te α−  = ( )1 it o tα− + . However, ( )iip t  = 

( )Pr  is in state  after  time unitX t i t⎡ ⎤⎣ ⎦  = ( )1 iiq t o t+ + . If there is any jump at all in 

the process of going from i → i in the interval t, then, there has to be at least two 
jumps (i to a state, and then back.) The probability of at least two jumps in the 
interval t is ( )2o t . The probability that those jumps come back to i is even less than 

this. Hence, the probability of going from i → i with any jump is also ( )2o t . The 

probability of going from i → i without any jump is then ( ) ( ) ( )2
iiiip t p t o t= − . So, 

( ) ( ) ( )2
iiiip t p t o t− = . This implies ( ) ( )0 0iiiip p′ ′= . 

• Derivation 2 
Consider the transition probabilities in a very short time interval of duration δ. 
Assume that ( )0X t i= . We know that the state occupancy time for all continuous-
time Markov chains are exponentially distributed; hence the probability that the 
process remains in state i during the interval is ( ) ( )0 0 0Pr ,X t i t t t X t iδ⎡ ⎤= ≤ < + =⎣ ⎦  
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( ) ( )1 ii ip oδ α δ δ− = + . We then regard iα  as the rate at which the process ( )X t  
leaves state i. 
Once the process leaves state i, it will enter state j with probability ijp� . Thus, 
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Define, for i j≠ , ij i ijq pα= �  as the rate at which the process ( )X t  enters state j from 
state i. For completeness, define ii iq α= − . Then, 
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• Kolmogorov backward and forward equations: ( ) ( ) ( )P t QP t P t Q′ = =  

Proof. By Chapman-Kolmogorov equation 
( ) ( ) ( ) ( ) ( ) ( )( ) ( )P t h P t P h P t P t P h I P t+ − = − = − . 

Hence, ( ) ( ) ( ) ( ) ( )
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(“Backward” because we look back in time to the rates of transition at 
time zero.) 
Similarly, 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )P t h P t P t P h P t P t P h I+ − = − = − . 
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Note that we assume the interchange of limit and sum is justifiable. 
(Always in the case of finite number of states.) 
Note that the formal justification needs careful analysis. 

• The formal solution is ( ) ( )
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Q t Q tP t Qt I Qt= = + + + +" . 

• ( ) ( )p t p t Q′ = . Equivalently, ( ) ( )j ij i
i
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Alternative proof. 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )p t h p t p t P h p t p t P h I+ − = − = −  

( ) ( ) ( ) ( ) ( ) ( )
0 0

lim lim
h h

p t h p t P h I
p t p t p t Q

h h+ +→ →

+ − −⎛ ⎞′ = = =⎜ ⎟
⎝ ⎠

 

• The Q is analogous to the one-step transition matrix P of homogeneous time-discrete 
Markov chains. 

• Jump Chains 
• Time-discrete Markov chain embedded in a time-continuous Markov chain 
• The jump chain has same state space S as corresponding continuous chain does, 

and its state diagram has the same arrows, but not the same arrow labels. 
• Jump chain’s discrete time advances by 1 every time the corresponding 

continuous-time changes state. 
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( ) ( )( )1 1 4 1P X k X k= − = =  since only one arrow out of state 4 

• Def: { }ip  = the stationary state pmf of the Markov chain. ( )1 2, , Tp p p= … . 

• Global balance equations: At “equilibrium” (or “steady state”)  

j∀  ij i jj j
i j

q p q p
≠
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At “equilibrium” (or “steady state”), ( )j jp t p→  and ( ) 0jp t′ → ; hence, from 
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p
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∑  we can obtain the 

stationary state pmf of the system (when it exists.) 



• If we start the Markov chain with initial state pmf given by p , then the state 

probabilities will be i∀ t∀ ( )i ip t p= . The resulting process is a stationary random 
process. 

Let ( )1 2, , , nt t t t=
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• A subset B of the state space S is closed for ( ){ }X t  if 

s∀ ( ), 0i jp s =  if i B∈ and j B∉  

⇒ can’t get out once you’re in 
• ( ){ }X t  is irreducible / indecomposable if S itself is the smallest non-empty set 

closed for ( ){ }X t  

• In that case, the entire state space S is a communicating class in the sense that  

i∀ ∈S j∀ ∈S s∃  such that pi,j(s) > 0. 

• A probability measure p  on S is invariant (is an “equilibrium measure”) if 

( )p pP τ=  for all τ ⇒ ( )p t  not depends on (t) 

where ( ) ( ),P P s sτ τ= + . 

• If  ( ){ }X t  is irreducible,  

there exists at most one invariant measure. 

• p  is invariant in the homogeneous case if and only if 0pQ =  
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Proof.  We know that ( ) ( ) ( ) ( )
homogeneousd p t p t Q t p t Q

dt
= = .  For ( )p t  to be 

invariant, must have ( ) 0d p t
dt

= . So, ( ) 0p t Q pQ= =  

• This is analogous to p pP=  where P is a 1-step transition matrix of 
homogeneous discrete-time Markov chain. 



Limiting Probabilities for Continuous-Time Homogeneous Markov 
Chains 

• A continuous-time Markov chain ( )X t  can be viewed as consisting of a sequence of 
states determined by 1) some discrete-time Markov chain nX  with transition 
probabilities ijp�  and 2) a corresponding sequence of exponentially distributed 

( )( )iαE  state occupancy times. 

• If the associated discrete-time chain nX  (governed by ijp⎡ ⎤⎣ ⎦� ) is irreducible and 

positive recurrent with stationary pmf jπ , then the long-term proportion of time spent 

by ( )X t  in state i is  
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where 1

iα
 is the mean occupancy time in state i.  

Further more, the ip ’s are the unique solution to the global balance equations j∀  
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Proof. 
Suppose that the embedded Markov chain Xn is irreducible and positive 
recurrent. Then we can find iπ ’s, the unique solution of j∀ j i ij

i

pπ π=∑ �  , 

and 1 i
i
π=∑ . Note that one time step of the embedded Markov chain 

denote one transition (jump) of the original continuous-time Markov 
process. 
Let ( )iN n  denote the number of times state i occurs in the first n 

transitions. Then the portion of “jump” to state i is ( )iN n
n

. Because the 

process is irreducible and recurrent, proportion of “jump” to state i → iπ . 
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Let ( )iT j  denote the occupancy time the jth time state i occurs. ( )( ) 1i j
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are then an iid sequence ~ ( )iαE . Hence, by the strong law of large 

numbers, with probability one, 
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We know that, with probability one, ( )lim i
in

N n
n

π
→∞

=  and 

( ) ( )
( )

1

1 1lim
iN n

in ji i

T j
N n α→∞

=

=∑ . Hence, 

1

1

i
i

i

i
i i

p
π
α

π
α

=
∑

. 

Let 1
i

i i

c π
α

=∑ . From j i ij
i

pπ π=∑ � , substitute i i ip cπ α= , we then have 

j jp cα i ip cα= ij
i

p∑ � . Note that 0jjp =� . Hence, i i ij i i ij
i i j

p p p pα α
≠

=∑ ∑� � . 

Now use ii iq α= − , and ij
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global balance equation. Thus, the ip ’s satisfy the global balance 
equations. 

• Now, fix i ∈ S and define 

( ){ }1 min 0 :T t X t i= > ≠  

( ){ }1min 0 :T t X T t i= > + =  = duration of first sojourn from state i and back. 
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Example 1: 

• For { }1,2=S , suppose Q
α α
β β
−⎡ ⎤
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, where 0α >  and 0β > . 
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With the initial condition ( )11 0 1p = , we have ( ) ( )
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α β α β
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By symmetry, ( ) ( )
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( ) ( )12 111p t p t= − , ( ) ( )21 221p t p t= − . 

The limiting behavior of ( )P t  is immediate and should be no surprise. The quantity 
α and β are the rates of getting out of states 1 and 2 respectively, moving to the other 
state, so in the long run, the respective chances of being in 1 and 2 will be 

proportional to α and β. Thus, ( )1ip t β
α β

→
+
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α β

→
+
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Example 2: Birth-and-death process 
• Def: Birth-and-death process is a Markov chain in which only transitions between 

adjacent states occur. 
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• Let 1j
j

j

r
λ
µ
−=  and 1 1j j jR r r r−= "  for j = 1, 2, …. Also, let 0 1R = . Then, if 

0
j

j
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converges, then the stationary pmf is given by 

0

i
i

j
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Rp
R
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∑
.  If the series does not 

converges, then a stationary pmf does not exist, and i∀ 0ip = . 

• The global balance equations are 

0 0 1 1p pλ µ= , and ( ) 1 1 1 1j j j j j j jp p pλ µ λ µ− − + ++ = +  for j = 1, 2, ….  

We can rewrite the second equation as follows: 

1 1 1 1j j j j j j j jp p p pλ µ λ µ+ + − −− = −  for j = 1, 2, …., which implies that 

1 1j j j jp p kλ µ− − − = , a constant for j = 1, 2, …. 

The case when j = 1 gives 0 0 1 1p p kλ µ− = . However, we already know that 

0 0 1 1p pλ µ= . Hence, k = 0, and therefore,  
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, where 1j
j

j

r
λ
µ
−=  for j = 1, 2, …. 

By simple induction argument, 1 1 0j j jp r r r p−= " . 

If we define 1 1j j jR r r r−= " , and 0 1R = , then 0j jp R p=  for j = 0, 1, 2, …. 
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• Sufficient condition for ergodicity is 
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Example 3: Truncated birth-and-death process 
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• Let 1j
j

j

r
λ
µ
−=  and 1 1j j jR r r r−= "  for j = 1, 2, …., c. Also, let 0 1R = . Then, the 

stationary pmf is given by 
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∑
.  

• The argument follows exactly the argument used in the birth-and-death process 

except the last step which requires 
0

1
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=∑ . Note that the sum 

is finite, and hence, always converges. 
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Proof. In the steady state, the value of pi represents the fraction of the time axis 
during which the system is in state i, or equivalently the probability that 
the system is in state i at a “randomly chosen instant.” However, the 
density of calling attempts varies with the state of the system. When in 
state i, call attempts occur at rate iλ . Hence, The fraction of all call 



attempts that occur when the system is in state i is not pi but rather 
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State diagram and Balance 
• Arrows represent probability transition rates, not transition probabilities. 
• Global balance 

Let S = A∪B and A∩B = ∅ 
 

S 

A B 

 
Can get global balance equation by equating flow from A to B to flow from B to A: 

, ,i i j i i j
i A i B
j B j A

p q p q
∈ ∈
∈ ∈

=∑ ∑  

• Suppose A = {k} 
B = S-{k} = {j: j ≠ k} 



 

k 

 
Then, global balance equation becomes , ,k k j i i k

j k i k
p q p q

≠ ≠

=∑ ∑  which is precisely 

the kth equation in 0pQ = . 

• Some “global” balance looks very “local” 
 

i i+1 

λ 

(i+1)µ  
• Local Balance 

Consider: 
 1

2

3

4

5
 

Cutting both links between states 1 and 2 partitions the state spaces in to {1} and 
{2,3,4,5}. Hence, the local balance equations p1q1,2 = p2q2,1 must hold. 
But, cutting both links between 4 and 5 doesn’t partition, so p4q4,5 may not 
necessarily equal to p5q5,4. 

• If a solution { },ip i S p∈ =  can be found that satisfies the local balance equations for 
all pairs of states, 
then this p  satisfies the global balance equations and hence is an equilibrium 
distribution. 



 

 
If each red arrow flow is equal to the corresponding magenta flow, then the sum 
of red flow is equal to the sum of magenta flow. 

• In such instances, need 
{{qi,j > 0 and qj,i > 0} or qi,j = qj,i = 0} ∀(i,j) 

≡ qi,j > 0 ↔ qj,i > 0 

thus, can’t have 

 
• When there exists a solution to the set of all local balance equations, the Markov 

chain is reversible. 

Time-Reversible Continuous-Time Markov Chains 
• Consider a stationary, continuous-time Markov chain. 
• The reverse process also spends an exponentially distributed amount of time with rate 

iα  in state i. 

Proof. 
Let Ti be the forward process’s state occupancy time for state i. 

( )
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Note that ( ) ( )Pr PrX t i X t iτ− = = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  by the stationaryness of the 
process. 



• The jumps in the forward process ( )X t  are determined by the embedded Markov 
chain ijp� , so the jumps in the reverse process are determined by the discrete-time 
Markov chain corresponding to the time-reversed embedded Markov chain given by 

j ji
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p
p

π
π

=
� �
� . 

• The transition rates for the time-reversed continuous-time process are given by  
j

ij ji
i

p
q q

p
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• If we can guess a set of transition rates { }ijq�  and a pmf { }jp  such that 

,i j∀ i ij j jip q p q=�  and i∀  ( )ij ij i
j i j i

q q α
≠ ≠

= =∑ ∑� , then { }jp  is the stationary pmf for 

( )X t  and { }ijq�  are the transition rates for the reverse process. 

• The continuous-time Markov chain ( )X t  is reversible  

≡  its embedded Markov chain is reversible 
≡  ,i j∀  i ij j jip q p q=  

(The rate at which ( )X t  goes from state i to state j is equal to the rate at which 

( )X t  goes from state j to state i). 

Proof. Since the state occupancy times in the forward and reverse processes are 
exponential random variables with the same mean, 
the continuous-time Markov chain ( )X t  is reversible if and only if its 

embedded Markov chain is reversible, i.e., ,i j∀  i ij j jip pπ π=� �  where { }iπ  is 
the stationary pmf of the embedded Markov chain. Now, recall that the 

stationary pmf ( )X t , 1 i
i

i

p
c
π
α

=  where i

i i

c π
α

=∑ is just a constant. So, 

i ij j jip pπ π=� �  is equivalent to i i ij j j jip p p pα α=� � . Now, use ij i ijq pα= � . We then 
have i ij j jip q p q= . 

• All continuous-time birth-and-death processes are time-reversible. 
Proof. The embedded Markov chain is a discrete-time birth-and-death process which 

is time-reversible. 


