
Blocking in Circuit-Switched Networks 
• Consider the 3-link network shown below 
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• Capacity of link A : CA = max. number of call that it support. 

• Origin-Destination pairs for Applications:  
App-1: (O1, D1) = (1,3) 
App-2: (O2, D2) = (2,3) 

With arrival rates Poisson,  : r1(3) = λ1, r2(3) = λ2 
• Holding times are ( )iµE  in application i, i = 1, 2; i.i.d. and   over applications 

(independent applications) 
• Blocked calls “lost”. 
• Define Ni(t) is # of app-i calls in progress at time t. 
• State: ( ) ( ) ( )( )1 2,N t N t N t= ; continuous-time Markov chain 

• App-i blocked if Ni(t) = Ci or N1(t)+N2(t) = C3 
Here, for example, while one of application 1 is in process, it utilizes links 1 and 3. If 
there are no capacity left in link 1 or link 3, then that application is lost. 

• Case 1 of 3-link network example: C3 ≥ C1+C2. 
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Then the two applications do not interact. The equilibrium distribution is a product of 
truncated Poissons: 
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Proof. Here, 1, 1iλ λ= , 2, 2jλ λ= , 1, 1i iµ µ= , 2, 2j jµ µ= . 
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Using local balance equations, we have 1) 2,
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then , 1, 2, 0,0i j i jp R R p= .  Requiring the sum of ,i jp  to 1, we have 

0,0
1, 2,

1, 2,

1 1

i j
i j i j

i j

p
R R

R R
= =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑∑ ∑ ∑
. Hence, 

1, 2, 2,1,
,

1, 2,
1, 2,

i j ji
i j

i j
i ji j

i j

R R RR
p

R R
R R

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟ ⎝ ⎠

⎝ ⎠⎝ ⎠

∑ ∑∑ ∑
. 

This reduces the problem to two independent truncated birth-and-death 
processes. The first one gives distribution { }1,ip , and the second one gives 

distribution { }2, jp . The combined distribution is , 1, 2,i j i jp p p= × .  

Note that this is possible because the domains are independent. We can write 
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• Case 2 of 3-link network example: C3 < C1+C2. 
For example, C1 = 2, C2 = 3, C3 = 4 
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Forbidden State: 
N1+N2 = 2+3 = 5 > 4 = C3 

 
 
If {pi,j} satisfies detailed balance, then {pi,j} satisfies global balance and process is 
time-reversible. 
If we temporary neglect the requirement N1+N2 < C3, the solution would be 
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 and this product solution would satisfy detailed balance, 

(including the dotted one).  
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Proof 
Column: ( )1 , 1 1,1i j i jp i pλ µ += +  ⇒  
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Therefore, detailed balance is satisfied for every (i,j) – (i′,j′) state pair: 
Let ( ) ( )( ), ,i j i jα ′ ′→  = weight on arrow. If no arrow, this is 0. 

Then, ( ) ( )( ) ( ) ( )( ), ,, , , ,i j i jp i j i j p i j i jα α′ ′′ ′ ′ ′→ = →  



Hence, a solution of this form satisfies detailed balance even after we impose N1+N2 
≤ C3 so that state (2,3) becomes forbidden. 
Then, all we have to do is change the constant in the denominator. 

Thus, the steady-state solution is 
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where S = ( ){ }1 2 3, : , ,i j i C j C i j C≤ ≤ + ≤  

• Description: 
Suppose traffic for application i arrives independently of that for all other applications 
in a Poisson λi fashion. 
Assume fixed routes. (If traffic from a given application actually is routed along 
several routes randomly in fixed proportions, view each as separate applications and 
the result below will hold.) 
State: ( ) ( ) ( ) ( )( )1 2, , , aN t N t N t N t= … , where Ni(t) is # of app-i calls in progress at 
time t, and a = number of applications 
Routes: for each link, { }: application i uses link R i=A A  

Capacity constraint: ( )i
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directed (and predefined) link. 
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(Basically, sum only (i,j) that is permitted.) 

• When one application is being process, it uses all the links from its origin to its 
destination.  If any of the links in its path is full, then it is lost. 

• S ⇒ multidimensional parallelepiped with planes cut away. 
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• Formula for calculating value in the rage of this function is a product of gi(ni)’s, but 

domain is no longer the cross product of domain of gi(⋅)’s. Hence, Ni’s are dependent. 
• For large networks, the constant is hard to find numerically 
• Also, it is desirable to use adaptive routing so that when a boundary is reached 

(approached), traffic is re-routed. This reduces blocking, is still Markov, but is no 
longer solved by a truncated product-form solution. 

 
 

 


