Filters

Discrete-time filter

Filter	$\hat{H}(\mathbf{w})$	h[n]
Low-pass	$\hat{H}_{\ell}(\mathbf{w}) = p_{\mathbf{w}_c}(\mathbf{w} + k2\mathbf{p})$	$\frac{1}{2\boldsymbol{p}}\int_{-\boldsymbol{w}_c}^{\boldsymbol{w}_c} 1 \cdot e^{j\boldsymbol{w}n} d\boldsymbol{w} = \frac{\sin(\boldsymbol{w}_c n)}{\boldsymbol{p}n}$
High-pass	$\hat{H}_h(\mathbf{w}) = 1 - \hat{H}_\ell(\mathbf{w})$	$d[n] - \frac{\sin(\mathbf{w}_c n)}{\mathbf{p}n} = \begin{cases} 1 - \frac{\mathbf{w}_c}{\mathbf{p}} & n = 0\\ -\frac{\sin(\mathbf{w}_c n)}{\mathbf{p}n} & n \neq 0 \end{cases}$
Band-pass $w_2 > w_1$	$\hat{H}_b(\mathbf{w}) = p_{\mathbf{w}_2}(\mathbf{w}) - p_{\mathbf{w}_1}(\mathbf{w})$ or $\hat{H}_b(\mathbf{w}) = p_{\mathbf{w}_c}(\mathbf{w} - \mathbf{w}_0) + p_{\mathbf{w}_c}(\mathbf{w} + \mathbf{w}_0)$ $\mathbf{w}_c = \mathbf{w}_2 + \mathbf{w}_1 \text{ and } \mathbf{w}_c = \mathbf{w}_2 - \mathbf{w}_1$	$\frac{\sin(\boldsymbol{w}_2 n)}{\boldsymbol{p} n} - \frac{\sin(\boldsymbol{w}_1 n)}{\boldsymbol{p} n}$
	$\mathbf{W}_0 = \frac{\mathbf{W}_2 + \mathbf{W}_1}{2} \text{ and } \mathbf{W}_c = \frac{\mathbf{W}_2 - \mathbf{W}_1}{2}.$	

Continuous-time filter

Ideal low-pass filter	Ideal high-pass filter	Ideal band-pass filter
$\hat{H}(\mathbf{w}) = p_{\mathbf{w}_0}(\mathbf{w})$ $h(t) = \frac{\sin(\mathbf{w}_0 t)}{\mathbf{p}t}$	$\hat{H}(\mathbf{w}) = 1 - p_{\mathbf{w}_0}(\mathbf{w})$	$\widehat{H}(\mathbf{w}) = p_{\frac{\mathbf{w}_2 - \mathbf{w}_1}{2}} \left(\mathbf{w} - \frac{\mathbf{w}_2 + \mathbf{w}_1}{2} \right)$
p t		$= p_{\mathbf{w}_2}(\mathbf{w}) \cdot \left(1 - p_{\mathbf{w}_1}(\mathbf{w})\right)$
		$=p_{\mathbf{w}_2}(\mathbf{w})-p_{\mathbf{w}_1}(\mathbf{w})$
pass band: $ \mathbf{w} < \mathbf{w}_0$	$ \mathbf{w} > \mathbf{w}_0$	$ w_1 < w < w_2$
stop band: $ \mathbf{w} > \mathbf{w}_0$	$ w < w_0$	$ \omega < w_1$ and $ w > w_2$

- $w_0 \Rightarrow \text{cut-off frequency}$
- Noise reduction via pre-emphasis / de-emphasis interesting signal $x(t) \Rightarrow$ low-pass noise $n(t) \Rightarrow$ broadband (flat $\hat{N}(\mathbf{w})$)

$$1) - \hat{H}_1(\mathbf{w}) \xrightarrow{\frown} \rightarrow$$

2)
$$\longrightarrow$$
 $\hat{N}(\mathbf{w}) \rightarrow$ record

2)
$$\longrightarrow$$
 $\hat{N}(\mathbf{w}) \rightarrow$ record
3) \longrightarrow $\hat{H}_{2}(\mathbf{w}) = \frac{1}{\hat{H}_{1}(\mathbf{w})} \xrightarrow{\checkmark} \longrightarrow$

$$\hat{Y}(\mathbf{w}) = \hat{H}_{2}(\mathbf{w}) (\hat{H}_{1}(\mathbf{w}) \hat{X}(\mathbf{w}) + \hat{N}(\mathbf{w})) = \hat{X}(\mathbf{w}) + \hat{H}_{2}(\mathbf{w}) \hat{N}(\mathbf{w})$$

$$y(t) \text{ contain less high-frequency content}$$

• Want: $w(t)*h_{desired}(t) = y_{desired}(t)$

$$\hat{H}_{desired}\left(\mathbf{w}\right) = \left|\hat{H}_{desired}\left(\mathbf{w}\right)\right| \xrightarrow{\Im} h_{desired}\left(t\right)$$

Suppose can build

Linear phase
$$\Rightarrow \mathbf{f}_{\hat{H}}(\mathbf{w}) = -\mathbf{w}t_1$$

$$\hat{H}(\mathbf{w}) = |\hat{H}_{desired}(\mathbf{w})| e^{-j\mathbf{w}_1} \xrightarrow{\Im} h(t) = h_{desired}(t - t_1)$$

$$\hat{Y}(\mathbf{w}) = \hat{W}(\mathbf{w}) \cdot \hat{H}(\mathbf{w})$$

$$= (\hat{W}(\mathbf{w}) \hat{H}_{desired}(\mathbf{w})) e^{-j\mathbf{w}_1}$$

$$= \hat{Y}_{desired}(\mathbf{w}) e^{-j\mathbf{w}_1}$$

Frequency-division multiplexing

Amplitude Modulation

• To transmit low-pass signal over a high-pass channel

AM with synchronic demodulation

- $w_c = \text{carrier frequency} >> 2\omega_m$
- Encode

$$z(t) = x(t) \times \cos(\mathbf{w}_c t) = \frac{1}{2}x(t)e^{j\mathbf{w}_c t} + \frac{1}{2}x(t)e^{-j\mathbf{w}_c t}$$

$$\hat{Z}(\mathbf{w}) = \frac{1}{2}\hat{X}(\mathbf{w} - \mathbf{w}_c) + \frac{1}{2}\hat{X}(\mathbf{w} + \mathbf{w}_c)$$

Proof Use Frequency-shift/modulation rule: $e^{j\mathbf{w}_{l}t}x(t) \stackrel{\mathfrak{I}}{\longleftarrow} \hat{X}(\mathbf{w} - \mathbf{w}_{l})$.

•
$$x(t) \times \cos(\mathbf{w}_c t) \xrightarrow{\Im} \frac{1}{2} \hat{X}(\mathbf{w} - \mathbf{w}_c) + \frac{1}{2} \hat{X}(\mathbf{w} + \mathbf{w}_c)$$

• Decode (Demodulation)

•
$$g(t) = z(t) \times \cos(\mathbf{w}_c t)$$

$$\hat{G}(\mathbf{w}) = \frac{1}{2}\hat{Z}(\mathbf{w} - \mathbf{w}_c) + \frac{1}{2}\hat{Z}(\mathbf{w} + \mathbf{w}_c)$$

$$= \left(\frac{1}{4}\hat{X}(\mathbf{w} - 2\mathbf{w}_c) + \frac{1}{4}\hat{X}(\mathbf{w})\right) + \left(\frac{1}{4}\hat{X}(\mathbf{w}) + \frac{1}{4}\hat{X}(\mathbf{w} + 2\mathbf{w}_c)\right)$$

$$= \frac{1}{4}\hat{X}(\mathbf{w} - 2\mathbf{w}_c) + \frac{1}{2}\hat{X}(\mathbf{w}) + \frac{1}{4}\hat{X}(\mathbf{w} + 2\mathbf{w}_c)$$

•
$$y(t) = g(t) * h(t) ; \widehat{H}(\mathbf{w}) = 2P_{\mathbf{w}_{-}}(\mathbf{w}) \text{ (low-pass)}$$

$$\hat{Y}(\mathbf{w}) = 2P_{\mathbf{w}_{m}}(\mathbf{w}) \cdot \hat{G}(\mathbf{w}) = \hat{X}(\mathbf{w})$$

• need exactly the same $\cos(\omega_c t)$ at both transmitter and receiver

AM with asynchronous demodulator

• Encode

$$f(t) = 1 + m \cdot x(t)$$
;

$$\begin{cases} \text{choose small enough m (modulation index)} \\ \text{that make } f(t) > 0, \forall t \end{cases}$$

For
$$\min(x(t)) < 0$$
, choose $m < \frac{-1}{\min(x(t))}$

$$z(t) = f(t) \times \cos(\mathbf{w}_c t) = (1 + m \cdot x(t)) \times \cos(\mathbf{w}_c t)$$
$$= \cos(\mathbf{w}_c t) + m \cdot x(t) \cdot \cos(\mathbf{w}_c t)$$

$$\hat{Z}(\mathbf{w}) = (\mathbf{pd}(\mathbf{w} - \mathbf{w}_c) + \mathbf{pd}(\mathbf{w} + \mathbf{w}_c)) + \frac{m}{2}(\hat{X}(\mathbf{w} - \mathbf{w}_c) + \hat{X}(\mathbf{w} + \mathbf{w}_c))$$

Decode

$$z(t) \xrightarrow{\text{peak detector}} f(t)$$

$$x(t) = \frac{1}{m}(f(t) - 1)$$

• Use lots of transmitter power to send $cos(\mathbf{w}_c t)$ -term in z(t)

Time-division multiplexing

•

Use $T_0 = 4a$ (Use the max. separation)