Review

d—(xlnx): Inx +1=Inex
X

i(xlogx) = Iogx+izlogex
dx In2

OI( xlogx) =- logx- 1

dx In2’
h(p)=- plogp- (1- p)log(1- p)
gamﬂw%§
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Probability transition matrix: @(y|x)ﬂ = Prgy= c|x =ry. (Theentry in the x™ row and the y™" column
denotes Q(y|x).)
Let input distribution be arow vector p'. Then the output distribution would be a row vector

q =p'Q.
Markov String/Process: X;': p(xf):p(xl)p(xz|xl)---p()g(|xk_1)p(>g(+1
Ordered substring of Markov string is Markov

X.)P(%[%..)

For OEn <n, <---<n, £n, (an,an,...,XnK) is also aMarkov string.

Given X, (the present), we have X! * (the past) . H (X“,X:+l Xk) (Xk X, )+ H(Xk+l Xk)
and X},, (thefuture) are independent: I(Xk Ly |X )
k+1

P %0l % ) = P(x %) P(X %)

Given X, ,wehave X, , and X,,, are

independent:

P (XXX ) = PO6aX) P(XealX)-
Forl£Ek<n,and k+1<m£n, n Iy

- H(XX )= a H(X|X

P (X% ) = P(Xen %) B (X K1) (X2 Jigﬂ( x.)




X{)=H (X0

0 b x

H(X,|X,) isincreasingink: H(X|X,,)® H( X|X,)

p(xnaXt) = p(X0s

| (Xo; X, ) isdecreasing ink: 1( Xy X, )3 1(Xg; X,.1)

Markov 3-string: X—e—Y—e—7Z: p(x.y.z)=p(x) p(y|x) p(z]y)
Also Markov in the reverse direction: p(z,y.x) = p(x|y. 2 p(y.2) = p(X|y) p(y| 2 p(2).
(z:x|Y)=1(xZ|v)=0.

Data processing theorem: |(X;Y)3 1(X;Z), 1(Z;Y) 3 1(Z; X); hence, closer b more .

L(X;Y)3 (XY |z)

U—6—X—0—Y—6—V P I(X;Y)? I{UV).
Stationary Markov process: H (X,) is constant. (by stationaryness). H ( X | X, ) increases with n.

Convexity:
H (Y) isaconcave G function of p(x) for fixed Q(y[x).
H (Y|X) isalinear function of p(x) for fixed Q(y[x).

1(X;Y) is a continuous concave C function of p(x) for fixed Q(y|x).
1(X;Y) isaconvex E function of Q(y|x) for fixed p(x).

1(X;Y)
1 (X;Y) =0if |Z|=1or |Y|=1.
Tofind 1(p,Q), firstfind q(y). Then, find H(Y). Next, find H(Y|X)=& p(x)H(Y|X = x). Finaly,

L(X;Y)=1(p.Q)=H(Y)- H(Y|X). X

Parallel d.m.c. channel. Let Y," betheresult of passing X" trough ad.m.c. (n use.)

Q(y ><1“)=§Qi(yl>ﬁ)-
(b))

i=1

“p(x) (X)) £ A1 (X,:Y) with equality if p(x1“)=_C£_) p.(%)-

i=1

1(U,5V,).

Qo-

Independent source: U, has independent components b I(UlL;VlL)3
¢

1



Let U,V discrete random variables. M =|U|=[v]. ¥ =v={01,...M - 1} .
Fano I nequality: H (U [V)£h(R) +P,log(M - 1).
Note: Pe=0b H(U|V) =0.

L
Extended Fano inequality: Let UX VT Ut = 0~ W£ h(P.) +Rlog(M - 1)

BSC(p)
Binary symmetric channel (BSC) with crossover probability p. x% 3@ BSC( p) a3y .
1-p
0 0
Y
P
1 i o1
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also = probability of error.
H (Y|X) = h(p) regardiess of {p(x)} . (by the “symmetric”)

®&

C = 1-h(p).
Two BSC'sin seriesis a BSC with transition probability p® = pa, + p,a,. 9® = p,p, + q0, .
0 1-p1 ~ 1- P2 0
P1 p2
P P
1 1
1- P1 ~ 1- P2 ©

e—l Wg1- 2p)(1- 2p,) 0ue1 10
Q =QQ, = 1h|e 10 ’ 1 1 1U )

n BSC'sin series is a BSC with transition probability | p® = >




&1 1u(.©(1 2p) Ogel Lyt

Ve e g1 1f
0 14
Two identical BSC'sin seriesis a BSC with transition probability p(z) =2pg.

w_1-0-2p)

nidentical BSC'sin seriesis a BSC with transition probability p >

Binary n-Sphere
Binary n-cube: geometric representation of {0,3". x=(x,...,x,)T {03".

Combinatoric fact:

20, isincreasing for | £ U and max when j )
&ip &2H

82H

1 1 1
- . . = -n+ = nt—
Stirling’s approximation: +/2p n”n2e i <nl<+4/2pn"ne 2 b Innl=nInn - n+o(n) asn®

g|lmm— -
n®¥ ﬂ

log, n! = nlogn- %n+o(n) =nlogn+an+o(n)
n

The hamming sphere of radiusr around X is S(g() Z{XT {04";d, (Z'X) £r}.
|S (x)|= Volume of radiusr sphere = a g
2
Let § =5(0)i {o,J}”.
_£ £ k+l
|SJ£( g <

amo . 1 een o

Let k =an where 0<a £ Then, I|m—Iog| |—I|m—Ioga = =lim=log = =H(a): The
2 vqume gl (%] "e¥n ganﬂ
volume surface shell

rate of growth of exponential of the volume is the same as that of the surface. |San| ~ o™

M |
Multinomial extension: for § a.n=1, Ii®rr¥1llogML =H(a,....a,).

= n (a;n)!
d,, (1(,2/) = ||1< X"l =fk:1£k£n, x * v}

Given xi {0,", g'?? = the number of sequences yT {0,4" with d,, (>_<,Y) =i.
- y Y



Coding
Hamming (n,k) code consistsof 2* elementsin {0,3}"

e-error correcting perfect code: every xI1 {0,]}n isin e-sphere around some codeword. These e-spheres
don’t overlap.
The only binary perfect codes are
Hamming
Golay code (e = 3)
Repetition code (e = m) where n = 2m+1 (w/ magjority vote)
e-error correcting perfect hamming code: ?ae af'ggzn'k = 2", or equivalently, g ?2:2“
ei=0e' gz izoel g
e-error correcting sphere-packed code: every x1 {O,]}n isin (e+1)-sphere around some codeword. These
e-spheres don’t overlap.
Hamming (7,4) codeis
not unique unless require 0 in the code.

s(x)Gs(y)=A&if xyl € ad x* y

. od o &/ 60
1-error correcting perfect code: ¢ =20 =2
80g log
Hamming (23,11) code
: aaa3 3@300
3-error correcting perfect code: ¢ g | 2% =27
el 0

Rate of an (n,k) code is R:E. P rate k code.
n n

"R 0<R<1, $n(R) such that no sphere-packed codes of blocklength n > n(R) exist.

Geometric arguments
"e>0 asn® ¥, received word when x issent falsfalsin the spherica shell of width +ne or
normalized width te.
$R >0=max of R>0 suchthat 2™ words can be put into {0,]}n with sphere of radius np around
them not overlapping.
Spherehardening: Forany €>0,asn® ¥, yl S=§,,..(X)\S, .(X) = the sphere of radius np
with width 2ne with probability 1.
For BSC(p), R >C=1- H(p) =1+ plogp+(1- p)log(1- p) ??

Block Coding



Block code: €1 {0,3". Blocklength n.

Size: |€| = # of codewords.

_logle|
n

Rate R =|R [(info) bits per channel use] if messages are a priori equiprobable.

Capacity for Discrete memoryless channd.
An(n, R, | ) code for adiscrete memoryless channel with input alphabet &, and output alphabet Y, isa
collection € of 2™ codewords each belonging to L" .(Z”R £ |£E|") .1 isthe probability of error.

(block Iength,# codewords,minPr[error]) code.

Some idea: For BSC(p), we have sphere of radius np with volume (or surface) ~ 2™ (?) . Whole space has 2"
sequences. So, if can build perfect code for which np-spheres around words don’'t overlap, then such code

would have —2— = 2" ")) codawords. Code's rate would be EIog 2n-Hk) 9. H (p).
onH () n o’

Operational definition of capacity: capacity of a discrete memoryless channel is the sup of al rates Rsuch
that there is asequence of (n,2™,1 ) codesforwhich | ® 0 asn® ¥ .

Consider discrete memoryless channel with transition matrix §Q(y |x), xT € and yT Y, |||Y| <¥ . Let
I (p,Q)=1(X;Y) bethe average mutual information between channel input and channel output when input
random variable has p.m.f. { p(x),xI x} . Then, |C =max | ( p,Q)| [bits per channel use].

p

C isunique, but argmax | ( p,Q) may not unique.
p

Discrete Memoryless Channel (DM C)

Channel

X=( Xy X)), Y= (Yoo Y ) - X3
( = ) Qs (¥1%)

3/43®X.

Qzu(z|5)=€)Q(yk|><K)-{Q(ylx), x1 X, y1 Y} isfixed.

Probability transition matrix: @(y|x)ﬂ = Prgy= c|x =ry. (Theentry in the x™ row and the y"
column denotes Q(Y|x).)
Y

X
DD M D D>

Qv =yx =

cocloc




P(x, )= p(Xf)éQ(yilx)

Let N={1...,n} ,and Al M1 N,then p(x,,%,) = p(x,)OQ(v|x)-

o 0
ngi ‘&, y, +=Q(¥]x%).

My ill, g

p(%.v)=p(x)O p(v.|x)

Y.
al

ForiT 11 {L...n}, p(x.v)=p(x)p(¥]%)

o5 Pl
p(¥ % %) = P(y|x) k*i

p(yf ) = p(xl”)é p(¥ [x)

L Or

p(yi|y1i'1,xl“)— IO(YNC) _ p(@)kjlp(ykb‘k) - oy [%).

- -1 .n il
P9 %) o) O p(xlx)
()8 1(%:Y)
D.M.C. with i.i.d. inputs
. Setup: Channel isd.m.c. {Q(y|x)} 1 Q(y|x) :(’D)Q(yk|xK). Theinput X,’sto the channel isi.i.d.

A

Préxl”=xft‘3|=g:)l p(%)-

p(%)Q( vilx.)

1

(X.Y,) isiid.ie P(x,9)=OP(x. )=

A A
k=1 k=

(@13

v isiid.ie q(y)=Oaly,)

=

=1




Capacity
0£C £ min{log| | log|Y[} .
Any channel with only one input letter or only one output letter has zero capacity. (1(X;Y)° 0).

BSC(p): C = 1- H(p) is achieved when the input is 1-p
uniform. 0 0

H(Y[X)=H(p). P

1(X;Y)=H(Y)- H(p). 2

1 i 01
LY
1- O(1- 2p)

Cascade of n identical BSC(p): is a BSC with transition probability p(" = —i=L > .

X, %% |BSC( p)|%¥® |BSC( p)| %% |BSC(p)|3%+®@ X,

For 0< p<1, because |1- 2p|<1, lim p" =1 imc =1 &g, 0£1(X;X,)EC™ b

¥ 2 o v
lim| (Xo; X,) =0 for any initial distribution.

Binary asymmetric channel: 1-p
f(p.)=(1- p)+(p+1 - p,. RS 0
H () =h( 1 (p,)). |
H(Y[X)=(1- p)h(p)+p.h(l ). 1 - 01
For max I(X;Y), need Iogl_ (p.) = h(1)- h(p) .
f(p,) p+l -1
Z-channd: 1-p
Let p be the probability of the X that that channel P O f(p)
introduces noise. P
_ ot f(P) _ ()
f(p)=(1- p)p; log ) 1-p 1p O - O 14(p)

H(¥[x)=ph(p); H(¥)=h(f (p))

C is achieved when



Noiseless channel: C =log|] is achieved by uniform X v
input distribution.
H(Y[X)=0.

Noisy channel with nonoverlapping outputs: C = log|4]
is achieved by uniform input distribution.. X Y
- H(Y[x)=0. —

Binary Erasure Channel: C = 1-a is achieved by uniform 1-a
input distribution.

1-a

Weakly symmetric channel: 1) every row of the transition matrix are permutations of each other, i.e.,
{Q(y|i)} are permutation of {Q(y|j)} ,and 2) all the column sums § Q(y |x) areequal.

o X
ae@hkﬁ.

Uniform distribution on the input aphabet implies uniform distribution on outpuit.
C=log|Y|- H(rowsof transition matrix) is achieved by auniform distribution on the input a phabet.

"X H(Y|X =x=H (FT) .Hence, H(Y|X)= H(FT) where ™ isany row of the transition matrix..
L(X;Y)=H(Y)- H(r")

Symmetric channels: All the rows of the probability transition matrix gQ(y|x)H L= Prgy = c|x =rgae

permutations of each other and so are the columns, i.e. 1) {Q(y|i )} arejust permutation of {Q(y| j )} ,and 2)
{Q(i |x)} arejust permutation of {Q( j |x)} .

Ex. £=2={01...,.M-1.Y=(X+Z)modM .

Ex. BSC.



b weakly symmetric. Hence, C =log|Y|- H (rows of transition matrix) .

Sum channel

Consider N DM C’ s with digoint input alphabets and disjoint output alphabets and capacities C1, Co, ...,
Ch. Cdll these DMC's as the subchannels. The associated sum channel has input and output a phabets
that are the unions of those of the sub channel, and for each input x, the transition probabilities Q(¥x) are
the same as in the sub channel that has x in its input aphabet. I n other words, the sum channel has all N
subchannel available but only one subchannel may be used at any given time.

-————————--d

XTc=0m

___________________________

———————————————————————————

(Or can have common input aphabet but digoint output a phabet, and sel ectable channel as shown
below)

DMC,

DMC; Y

DMC3;

Let £, and Y, be the input alphabet and the output alphabet of the i subchannel. ¢ =| J<,

i=1

Y :in. LCX =A,and Y CY, = Aforforit j. Let w(n) bethe probability that XT &, and
i=1
p,(X)=PrgX =x|XT & g. Then, for xT &, p(x)=w(i) p(x).

For xT &, and yT ¥, Q(y|x) =Q(y|x)d (j.i).

Consider each subchanndl,

o o Q (ylx)

Let | (X;Y)= . . J .Then, C. = [ (X;Y).

1 (X:Y) XTa}Cj|o,(X)yia%QJ(yIX)IogéL 010 en,C = max 1,(X:Y)
X &



I
o QLY[X) & & .
1)=& p() & QT8 ufi)1 (v)- & w(roon(s).
xl ¢ yl'y =1 j=1
N Ci
C =logd 2% | isachieved by w(j)= N2 and{pj(x),xT :rj}:arg max |, (X;Y).
=1 é oC: {p; ()X 2}

Parallel channedl:

Consider N DMC subchannels with capacities Cq, Cy, ..., Cn. The subchannels are connected in parallel
in the sense that once each unit of time an arbitrary symbol is transmitted ard received over each
subchannel. The output from each subchannel depends only on the input to that channel.

geQ(le x)= éQJ (v I )9
e j=1 (%]

X,® [DMC|@ Y,

1
1
1
1

1
1
&, u ! ! ea
ngH | TTTTTTTIIITIIITILINED ngH
L s R /
1 1
! ﬂ :
- ___--__ 62_ __

C =4 | isachieved by independent input p(x) =O p,(x) where {  (x)} isthe distribution that

i=1 i=1
achieves C; for the i subchanndl.

Cascade BSC's. A cascade of n identical BSCs each with transition probability p is equivalent to asingle
BSC with

Iterative Calculation of C: The Arimoto-Blahut Algorithm.
Given a DMC with transition probabilities Q(y[x ) and any distribution p,(x).

Define asequence p, (x),r =0, 1, ... according to the iterative prescription:

q(v)=4& n(X)Q(y[). loge (x)=& Q(yIX)Iogi()(/t;) P (X) =S

X y




ér[0® 0] Prjo® 1]
1) Set p,=gpy(0), Py(1)....f (row vector). Q=gPr[1® 0] Pr[1® 1] . Let Q(x) bethe
: g

N

row x of Q.
2 g =pQ.
3) Foreachx, logc, (x) =-H (row x of Q) - sum((row x of Q).*log(q, )).
4) Foreachx, ¢, (x)=2""" Form ¢, = ¢ =g (0).c, (1)...§-

5) temp=sum(p,.*c,).

1
6 -~ (p.*c).
) Pra temp(pr )
7) Repeat 2) —6)

f(pQP)=max f(p.QR)* f(p,.QPR)
1(p.:(x),Q)2 1(p(x),Q); thus, 1(p,,Q) is monotonic increasing with .
Iogaaé pr(x)c,(x)EECEIog(maxc,(x))
&S o 2
liml (p,,Q)=C if "x py(x) >0

System
Feedback: all the received symbols Y; are sent back immediately and noiselessly to the transmitter, which
can then use them to decide which symbol to send next.

Feedback can help enormously in ssimplifying encoding and decoding. However, it can not increase the
capacity of d.m.c.

Source-Channel coding theorem: we can transmit a stationary ergodic source over a channel if and only if
its entropy rate is less than the capacity of the channel.

¥:9® [Encoder] %:%:® |Q(y |x )| %4 ¥4® [ Decoder| %4 ¥®
F)e(n) :Prngn 1 VlnH: é. é. p(u:[])Q(y]I.1 EnC(U:T))I{D(_:‘C(yf)1 uf}
o

If U, Uy, ..., Uy isafinite alphabet stochastic process that satisfies the AEP (ex. stationary ergodic
source), then there exists a source channel code with Pe(”) ® O if source entropy rate H (u) <C.

For any stationary stochastic process, if H (u) > C, the probability of error is bounded away from zero,
and it is not possible to send the process over the channel with arbitrary low probability of error.

Info transmission theorem with stationary source and DMC

%%® [Encoder] %% ® %:%4® [Decoder| %2%i® [User].



Fig 1.

Let U=V={01,...M-3 M-ay. U=(U,,..,.U_ ), X=(X;,....,. X ), Y=( Y. %), V= (V0 V).
Source {U,} is stationary with entropy rate H. Channel isDMC with Q = §Q(y|x)§-

Define
P,=P[V,2U,].

1g

Average error probability/frequency: Ee :ta P,, = expected frequency of errors.
r=1

C= {m(aﬁ (p,Q) = channel capacity in bits per channel use.
p(x

C¢:%C = channel capacity in bits per source letter.
Information transmission theorem for stationary source and discrete memoryless channel
1) If H> C¢:EC [ bit per source letter], then P, >0.
2) Forany R< C and any e > 0, we can find a code (M = 2", n) of rate Rand sufficiently large block

length n for which max P,(j) <e.
I

Weak Conver seinfo transmission theorem when channd isDMC

Let US VAT U-=9-.
H - % =H - c%@g h(R)+Rlog(M - 1) £h(R)+PnR,

If H>C¢, then P, >0.



R

Information transmission with an arbitrary small expected frequency of errorsis not possible if the source
L

H(U
entropy H = lg@rg# [bit per source symbol] exceeds the channel capacity C¢measured in bit per

source symbol. This conclusion holds even if one permits unbounded computation effort and is willing to
tolerate enormous coding delay (L ® ¥ and N ® ¥ with L/N kept fixed).

Typical Sequencesfor i.i.d. X;
Let & be adiscrete alphabet. { p(x),x1 &} beapmf. X =(X,,...,.X,) =X X =(X,....%,) =x' T L.
N(x|>‘<):|{k:1£k£n,xk=x}|.
i LN A- | N(x|>‘():n.

XL
The composition/ type of X = { N(x|x):" x1 x} .
N (x[%)
n

d

- p(x) <m-

Def. Given d, % isd-typical of { p(x),xI 4} if " xT &,

k=1 X
x1 T,(p)
- N (x|x) d
| - el
xI &, - p(x) <le




- M- H ({ p(x)}) <d|log p,..| =€ -

e, >0.
e, can be made arbitrary small by making d small enough. (
Define H* =H ({ p(x)}) +e,, H =H ({ p(x)}) - e,.
2™ <p (R)<2™ .
T, (p)| €2

lime, =0
d® 0

X

;N X
Weak Law of Large Number: " x1 £ " e >0 L!@TPE (n| - p(x)

"d>0 limPrgxX1 T,f=1. limPrgX1 T,§=0.

Jointly Typical Sequencesfor i.i.d. (Xi,Y;)
Let {P(x,y) = p(x)Q(y[x).xI &yl y} be thejoint pmf over £~ Y. | T~ Y| =|T||Y].
N(x,y|>‘<,y) =|{k:1£ KEN, (X, Y, ) =(x y)}|

NG = & Nl
yl

(%) are jointly d-typical of {P(x,y) = p(x)Q(y|x).xI L.yl 4} iff

N(x,y|%y)
n

d
<—.
Y

- P(x,y)

o
1
o
—~
°
O
SN—
1
—r—
—
X
<
N—
—
i
<l
SN—
(3.
o
1
<
=
S,
——
°)
o~
X
<
SN—
1
©
—
X
SN—"
O
<
X
==
—

% isd-typical of : p(x)=a P(x,y)g, and y isd-typical of }q(y) =
) y I

a P(x,y)g.

X



p p(x)£2™0 g(y)g2 ™
[T (P)| 2277

Direct Noisy-Channel Coding Theorem for d.m.c.

logM
n
Random code selection / random coding: generate C at random according to the distribution

p :{ p(x), x1 x} ;
Let C :{ G )?(M)} be arandomly chosen block code such that al nM letters (of the M codewords each
with n letters) are i.i.d. { p(x)} .

Block code: € :{7((1),...,7((“')}. 1 a". Rateof thecode = R= . M =2" Hence, (Z“R,n) code.

Note that once code is select, you use it in a deterministic way.

Prext = x = Op( )

P = =0 p(x)

Thus, the channel input isi.i.d. with p :{ p(x),xI 513}

A
Préx) =xa=ju=Préx =x8=0 p(x)
k=1
Independent of the random code, let J be the random message index with pmf { p.lE|E M} AfJ =),
then the components X", X[7,..., X} of XU) will be put into the channel in this order during n successive
channel uses.

So, by knowing J, we know log(M) bitsin n channel uses.
Y =(Y,,...,Y,) © theresulting channel output vector.

Jo J( ) = the decoder’ s estimate of J basedon Y .

P = Prg'j . JB which depends on the joint distribution of J, €, Y , and D.

Joint typicality decoding rule: Upon receiving y,if $!'j* 1£ j*£M (XJ*, y)T T, , decode y

by J ( y) = j*.If nosuch indexor if there is more than one such index, declare a decoding error.

R(i) :Prgj 1 J|J = j Y (averaged over al code).
By symmetry of code selection scheme, " j P(j)=P,(1).

M

Overall average error probability: P, = PreJ ! Ju—a pP.(i)=P(1).




Probability facts:

(%9)1 T, (pQ) P b, ()E2™ and g (y)£2™
For /=1

For 711,
{X(”),ZEKE M} isindependent of Y .

Qv|>< J(| ) () Oq(yk)

P 913 (%91 = Py (K)o (¥) = Py (%) 4 () sameforall £ 1

Pr{()—((é),\?)i To (P)[3 :]} :Pr{(X(Z),\?)T T (P)]9 :]} £ M ) ) = PR \yhere

1(p,Q) =1(p,Q)- e, where g, :d@ogmxin p(x)‘+ (y)|+

AW=PleEE]er(E] ]
E ={(X,Y)T T.(pQ)[3 =1 limPr[E] = 0 because (X,.¥) ~ pQ.
E, U{(x V)1 7,9 =1 Pr[E]£ 20,

If 1(p.Q)" >R, limPr[E,] =0.

(x)Qly )2

The channel coding theorem:
Direct: All rates below capacity C are achievable.

"R R<C, there exists a sequence of (Z”R, n) codes along which the error probability decaysto zero

asn® ¥. (regardless of the probabilities P; of the messages.)

"R R<C,"e>08% a(Z”R,n) code of rate Rand sufficiently large block length n for which

m?xPe(J)<e.

Conversely, any sequence of (Z”R,n) codeswith Ii®r'QI " =0 must have RE C.

Etc

Separation Theorem for source and channel coding.



Let {Uy} be an ergodic stationary information source with entropy rate H. If H < C, the capacity of the
DMC Q(y |x) , then it is possible to convey U through the channel with anarbitrary small probability of
error. Employ a source code with rate R, and a channel code with rate R, suchthat H < R <R, <C

[ bit/sec].

Asymptotic optimality can be achieved by separating source coding and channel coding.
The source code and the channel code can be designed separately without losing asymptotic optimality



