
• Cantor set C0 
• The Cantor set is  

• the subset of [0,1] of all numbers expressible in base 3 with digits 0 and 2. ⇒ 
( )1 2 3
0.a a … , { }0,2ka ∈ . 

• what's left over after removal of a sequence of open subintervals of [0, 1]. The 
algorithm is as follows: 1) Divide the remaining intervals each into three equal parts. 
2) Remove the open middle interval. 3) Repeat 1). 

• countable intersection of finite unions of closed intervals. 
• closed (intersection of closed sets), non-empty, perfect 
• Doesn’t contain any interval. 
• Has no isolated point. 

• Has the same cardinality as ¡ . ( ) ( )1:1
1 2 1 23 2

0. 0.ontoa a bb→… … , { }0,1
2
k

k

a
b = ∈ . 

The Concept of Measure 
Intervals 

• I denotes an interval (a,b) or [a,b], or (a,b] or [a,b), then length of I = I  =  b – a. 

• If a = -∞ or b = +∞, then I  = +∞. 

• I  is a non-negative extended real number. 

• Additivity: 1 2I I I= ∪ , 1 2I I∩ = ∅ , then 1 2I I I= ∪ . 

• Finite additivity of length: If interval 
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Proof. Induction. Observe that it is possible to remove one of the intervals Ik (say the one 
containing an endpoint or a neighborhood of an endpoint if I is open) so that the union of 
the remaining intervals is still an interval. 

• Subadditivity: interval 
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Proof. Shirk jI  to jI ′  so that I is the disjoint union 
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i
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=

′= ∪ . 

• Monotonicity: I J I J⊂ ⇒ ≤ . 



• Countable additivity / σ-additivity: If interval 
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• If one side is +∞, then so is the other. 

• 
1

i
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I
∞

=
∑  can be +∞ either because one of the summands is +∞ or because the series 

diverges. 

1) Proof for finite I . “≥”Consider 
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⊂∪ . Rearrange ( ) ( )i kI I ′=  so that 1kI −′  lies 

to the left of kI ′ . iJ 's fill the gaps. Disjoint kI ′ ’s iJ ’s. 
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Heine-Borel theorem ⇒ N∃  
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2) Proof for I =+∞ .  [ ] [ ]( )
result is finite interval 1
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• 
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Proof. Construct disjoint interval jI ′  by reducing jI . 
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Proof. Let 
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σ-field 

• Let X be a set (universal), and F is a family of subsets of X. F is called a field (or algebra of 
sets) provided that 
1) ∅∈ F  

2) cA A∈ ⇒ ∈F F . 
3) ,A B A B∈ ⇒ ∪ ∈F F . 

⇒ ,A B A B∈ ⇒ ∩ ∈F F  

Proof. ( )c c cA B A B∩ = ∪  

⇒ , \A B A B∈ ⇒ ∈F F  

Proof. \ cA B A B= ∩ . 

• A field forms a Boolean algebra under the operation ( ) ( )\ \A B A B A B B A+ = ∆ = ∪  
and A B A B⋅ = ∩ . 

Ex. Set of all subsets of X. 

Ex. X = any fixed interval of ¡ . { }finite unions of intervals contained in X=F . 

• A field F (on X) is called a σ-field provided that if A1, A2, … is a sequence of sets in F, then 
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Ex. Set of all subsets of X. 

• Let F  be a field. σF  = the σ-field generated by F is the intersection of all σ-field containing 

F = 
 is a field

g
g

g
σ −
⊂

∩
F

. 

• Is a σ-field 
Proof. Let 1 2, , , ,A B A A σ∈… F , then 1 2, , , ,A B A A …  every g. All g is σ-field; thus, 1) ∅  

in every g. 2) c A  also in every g. 3) A B∪  also in every g. 4) 
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A
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• Is the smallest σ-field containing F. 
If H is a σ-field and ⊂F H , then σ ⊂F H .  

Proof. H  is one of the g’s. 
• Let interval X ⊂ ¡ . XB  = σ-field generated by the field of finite unions of subintervals of X. 

• Call XB  the σ-field of Borel subsets of X or σ-field of Borel sets on X. 

• Call set XB ∈ B   Borel set. 

• Is the smallest σ-field containing finite unions of subintervals of X. 
• Gδ  set is a countable intersection of open sets 

• Ex. open sets, intervals, countable intersection of countable union of open sets. 

• ¤  is not Gδ . 

• Gδ  is not a field; thus, not a σ- field. 

Measure 

• Let F be a σ- field and [ ]: 0,µ → ∞F . µ is called a measure  provided that 

1) ( ) 0µ ∅ =  

2) σ-additivity: if 
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• Finite additivity: if 
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Proof. From σ-additivity, let jA = ∅  1j n∀ ≥ + . 

• Members of F is called measurable sets  

• Monotonicity: ,A B ∈ F , A B⊂  ⇒ A B≤ . 

Proof. 
0

\B A B A
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• Continuity from below: If 1 2 3A A A⊂ ⊂ ⊂ L  is an increasing sequence of measurable sets 

and, then 
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Proof. Let 
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• Conditional continuity from above. If 1 2 3B B B⊃ ⊃ ⊃L  is a decreasing sequence of 

measurable sets, and iB  are finite i∀ , then 
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• Subadditivity: If A1, …, An are measurable sets, not necessarily disjoint, then
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Proof. Let B1 = A1. 
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• σ-subadditivity: If A1, A2, …  is a sequence of measurable sets, not necessarily disjoint, then 
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Proof. Let B1 = A1. 
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• If 
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Proof. By monotonicity, and subadditivity. 

• If 
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• If B1, B2, … is a sequence of measurable sets, and i∀ 0iB = . Then, 
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B
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Proof. By σ-subadditivity. 

• Outer regularity: Let B be a Borel set. Then, { }inf : ,   openB A B A A= ⊂ . 

• Inner regularity: Let B be a Borel set. Then, { }sup : ,   closedB F F B F= ⊂ . 

Lebesgue measure 

• Lebesgue measure on ¡ : [ ]: 0,µ → +∞¡B . B ∈ ¡B . 

( )
1 1
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∞∞

= =

  
= ⊂ 

  
∑ ∪ . 

• Is a measure. 

• ( )
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• Outer regularity of the Lebesgue measure: Let B ∈ ¡B , then 

( ) { }inf : ,   openB A B A Aµ = ⊂ . 

• Let B ∈ ¡B , assume ( )Bµ < ∞ . Then, A Gδ∃ ⊂  such that A B⊂  and ( )\ 0A Bµ =  

( ) ( )( )A Bµ µ= . 

Measurable function  

• Let ( ), ,X µF  be a measure space. 

• F  is a σ field on X. 
• Note that ∅∈ F  ⇒ X ∈ F . 

• Let ( ){ }1:S f S−= ⊂ ∈¡M F , then M  is a σ field on ¡ . 

Proof. 1) F  is a field; hence, ∅∈ F . ∅ ⊂ ¡  and ( )1f − ∅ = ∅ ∈F ; hence, ∅∈ M . 2) 

Let S ∈ F . Then ( )1f S− ∈ F . ( ) ( )1 1\ \f S X f S− −

∈ ∈

=¡
F F

. F  is a field; hence 

( )1 \f S− ∈¡ F . Thus, \ S ∈¡ M . 3) Let 1 2, ,S S ∈… M , ( )1 1
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• Let :f X → ¡ , then f is measurable  

≡  Def: B∀ ∈ ¡B  ( )1f B− ∈ F . 

≡  1) I∀ ⊂ ¡  interval ( )1f I− ∈ F   



≡  2) I∀ ⊂ ¡  of the form ( ),a ∞  ( )1f I− ∈ F  

≡  3) a∀ ∈¡  ( ){ };x X f x a∈ > ∈F  

Proof 1) “⇒” Trivial because I∀ ⊂ ¡  I ∈ ¡B . “⇐” We have the set I  = 

{ }finite unions of intervals in ⊂¡ M . Note that ¡B  is the smallest σ field on ¡  that 

contains I . M  is a σ field on ¡ ; hence ⊂¡B M .  

Proof 2) “⇒” trivial because ( ),a ∞  is an interval.  “⇐”We have the set ′I  = 

( ){ }finite unions of intervals of the form , in a ∞ ⊂¡ M . M  is a σ field on ¡ ; hence M  

contains ( ) ( ]\ , ,a a∞ = −∞¡ , ( ) ( ) ( ], \ , ,a b a b∞ ∞ = , [ )
1

1
, ,
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n

∞
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 − ∞ = ∞  
∩  etc. 

,a b∀ ∈¡ . (We can get any kind of intervals from elementary set operations of sets of the 
form ( ),a ∞ .) 

• , :nf f X → ¡ , then 

• ( ) ( )1 1\ \f S X f S− −=¡ . 

Proof. ( ) ( ) ( )1 \ \x f S f x S f x S−∈ ⇔ ∈ ⇔ ∉¡ ¡ ( )1x f S−⇔ ∉  

( )1\x X f S−⇔ ∈ . 
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• ( ) ( ) ( )( )1 1 1g f A f g A− − −=o .  

Proof. ( ) ( ) ( )( ) ( ) ( )1 1x g f A g f x A f x g A
− −∈ ⇔ ∈ ⇔ ∈o  ⇔ ( )( )1 1x f g A− −∈ . 

• { } ( ){ }
1

:sup :n k
n k

x X f a x X f x a
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∈ > = ∈ >∪  

Proof. “⊃” ( ){ } ( )
00
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: k k
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x x X f x a k f x a
∞

=

∈ ∈ > ⇒ ∃ >∪ . But ( ) ( )
0

sup n k
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f x f x≥ . 

Hence, ( )sup n
n

f x a> , and therefore, { }:sup n
n

x x X f a∈ ∈ > . “⊂” Let 



{ }:sup n
n

x x X f a∈ ∈ > . Assume k∀ ∈¥ , ( )
0kf x a≤ . Then ( )sup n

n
f x a≤  ⇒ 

contradiction. 

• Let ( ), ,µ¡¡ B  be a measure space, and :g →¡ ¡  continuous. Then g is measurable. 

Proof. We know that the inverse image of open set is open. a∀ ∈¡  ( ),a ∞  is open; 

hence, ( )( )1 ,g a− ∞  is open. ( )( )1 ,g a− ∞  is in ¡B  because, by structure theorem, 

( )( )1 ,g a− ∞  is  a (disjoint) union of at most countable number of open intervals. 

• Let ( ), ,X µF  be a measure space, then ( )f x c≡ , c ∈¡  is measurable. 

Proof. ( ){ } ,
:

,a

a c
F x X f x a

X a c
∅ ≥

= ∈ > =  <
. Both , X∅ ∈F . 

• Let ( ),X F  be a measurable space and :f X → ¡  measurable. Also, let ( ), ¡¡ B  be a 

measure space, and :g →¡ ¡  measurable, then ( ) ( ) ( )( ) :h x g f x g f x X= = →o ¡   is 
measurable. 

Proof. ( )( ) ( )( )( )1 1 1, ,aH h a f g a− − −= ∞ = ∞ . Because g is measurable, ( )( )1 ,g a− ∞ ∈ ¡B . 

Also, because f is measurable, B∀ ∈ ¡B ( )1f B− ∈ F . 

• Let ( ),X F  be a measurable space, and , :f g X → ¡  be measurable functions. Then 

I) ( ) ( ) ( ) :h x f x g x X= + → ¡  is measurable. 

Proof. a b a b
b

H F G −
∈

= ∩
¤

∪ . ,a b∀ ∈¡  ,b a bF G − ∈ F . F  is a σ field; hence, 

a b a b
b

H F G −
∈

= ∩ ∈
¤

∪ F . 

II) 2 ,f f , cf for c ∈¡  are measurable. 

Proof. 2x , x , cx  are continuous function. 

III) If x X∀ ∈  ( ) 0f x ≠ , then ( ) ( )
1

h x
f x

=  is measurable. 

Proof. For a > 0, we have 

( ){ } ( )

( ) ( ) ( ) ( )

( )( ) ( )( )1 1 1 1

1
: :

1 1
: 0, : 0,

1 1
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aH x X h x a x X a
f x

x X f x f x x X f x f x
a a

f f f f
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− − − −

  = ∈ > = ∈ > 
  

   = ∈ > < ∪ ∈ < >   
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Similarly, for a < 0, we have  



( ) ( ) ( ) ( )
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For a = 0, we have 
( ) ( ){ } ( )( )11

: 0 : 0 0,aH x X x X f x f
f x

−  
= ∈ > = ∈ > = ∞ 

  
. 

Because for any interval I, ( )1f I− ∈ F  and F  is a σ field, we have aH ∈ F  since it is 
a union and/or intersection of sets in F . 

IV) If ,a b ∈ ¡ , then :af bg X+ → ¡  is measurable. 

Proof. ,af bg  are measurable. Thus, af bg+  is measurable. 

V) :f g X− → ¡  is measurable. 

Proof. From (IV), let a = 1, b = -1. 
VI) :f g X⋅ → ¡  is measurable 

Proof. ( ) ( )( )2 21
4

f g f g f g⋅ = + − − . From (I) and (V) we have f g+  and f g−  

measurable. By (II), we have ( )2
f g+  and ( )2

f g−  measurable. By V) we have 

( ) ( )2 2
f g f g+ − − . By (II), we finally have ( ) ( )( )2 21

4
f g f g+ − −  measurable. 

VII) If x X∀ ∈ ( ) 0g x ≠ , then / :f g X → ¡  is measurable. 

Proof. Because x X∀ ∈ ( ) 0g x ≠  , from (II), 
( )
1

g x
 is measurable. Because f(x) and 

( )
1

g x
 are measurable, form (VI), we conclude that ( ) ( )

1
f x

g x
 is measurable. 

VIII) ( )max , :f g X → ¡  is measurable 

Proof. First, note that ( )max ,
2 2

f g f g
f g

+ −
= + . Because measurability is 

preserved under addition, subtraction, ⋅ , and scalar scaling, we conclude that 

2 2
f g f g+ −

+  is measurable. 

• Let ( ) ( ) ( ) :h x f x g x X= + → ¡ , ( ){ }:aF x X f x a= ∈ > , ( ){ }:aG x X g x a= ∈ > , 

( ){ }:aH x X h x a= ∈ >  = ( ) ( ){ }:x X f x g x a∈ + > , then a b a b
b

H F G −
∈

= ∩
¤

∪ . 

Proof. We want to show that c a c b a b
c b

F G F G− −
∈ ∈

∩ = ∩
¡ ¤

∪ ∪ . “⊃ ” b a b
b

x F G −
∈

∈ ∩
¤

∪  ⇒ 

( ) ( )0 0 0 and b f x b g x a b∃ ∈ > > −¤  ⇒ ( ) ( ) ( ) 0 0h x f x g x b a b a= + > + − =  ⇒ ax H∈ . 



“⊂ ”Let ax H∈ . Note that because ¤  is dense in ¡  and ( )f x ∈¡ , ∃  sequence ( )nb  

monotonically increasing, ( )lim nn
b f x

→∞
= . Because ( )nb f x< , 

nbx F∈ . Then 0n∃  such 

that 
na bx G −∈ .   

Otherwise, we have n∀  ( ) ng x a b≤ − . Take n → ∞  and we have ( ) ( )g x a f x≤ −  

which implies ( ) ( ) ( )h x g x f x= +  ≤ a which contradict the assumption that ax H∈ . 

Hence, 
0 0n nb a b b a b

b

x F G F G− −
∈

∈ ∩ ⊂ ∩
¤

∪ . 

• Let ( ),X F  be a measurable space and n∀ ∈ ¥  :nf X → ¡  measurable. Then 

• sup n
n

f  is measurable 

Proof. { } ( ){ }
1

:sup :n k
n k

x X f a x X f x a
∞

= ∈

∈ > = ∈ >∪
F

 

• inf nn
f  is measurable 

• limsup nf  is measurable 

Proof. ( )limsup inf supn kn k n
f f x

≥

 =  
 

. ( )sup k
k n

f x
≥

’s are measurable. 

• liminf nf  is measurable 

• If nf  converges pointwise to some function, then lim nn
f

→∞
 is measurable. 

Proof. x∀  ( ) ( ) ( )lim limsup liminfn n nn
f x f x f x

→∞
= =  . 

• Let ( ),X F  be a measurable space, E X⊂ . Then ( )
1,
0,E

x E
x

x E
χ

∈
=  ∉

 is the characteristic 

function of E. 

• Eχ  is measurable iff E is measurable ( )E ∈ F . 

Proof. “⇒” { } [ ]1 1,1= ∈ ¡B . Eχ  is measurable. Thus, { }( )1 1χ − ∈ F . { }( )1 1 Eχ − = .  

“⇐” ( )( )1

, 1

, , 0
, 0 1

a

a X a
E a

χ −

∅ ≥


∞ = <
 ≤ <

.  And we know that ∅ , X, E ∈ F . 

• Let ( ),X F  be a measurable space. :f X → ¡  is a simple function 

≡  (Def) 
1

i

N

i E
i

f a χ
=

= ∑  where iE X⊂ , ∈ F , and disjoint, 0ia ≠ . 

• Class of simple functions = Class of measurable function that take finitely many values 



 Proof. “⊂” ( )
{ }

1

, 1, ,

0,

i i

N

i
i

a i N x E
f x

x E
=

 ∃ ∈ ∈


= 
∉



…

∪ . “⊃” x X∀ ∈  ( ) { }1, , Nf x v v∈ … . 

Assume that iv ’s are distinct. Then { }( )1

1
i

N

i f v
i

f v χ −

=

= ∑ . Note that { } [ ],i i iv v v= ∈ ¡B . f 

is measurable; hence, { }1
if v−

∈

 
∈  

 ¡B
F . Because iv ’s are distinct, { }1

if v−

∈

 
  
 ¡B

’s are 

disjoint. 
⇒ f is measurable. 

Proof. iE ∈F  ⇒ 
iEχ  measurable ⇒ 

1
i

N

i E
i

f a χ
=

= ∑  measurable. 

• Not require ai’s to be distinct. 
• f does not have a unique representation. 

• Let :f X → ¡  measurable, f  ≥ 0. Then :ns X∃ → ¡  0ns ≥  simple function such that 

ns f↗  ( ns  converges pointwise to f in a monotonic increasing manner.) 

( ) )( )

2

11

2 1

1 2 ,,0 2 2

2
2

n

n

n n

n
n n k k ffk

k
s x χ χ −−

−

 +   ∞ =   

= +∑  

• Let :f X → ¡  measurable, then :ns X∃ → ¡  simple function such that x X∀ ∈  

( ) ( )ns x f x→ . 

• ( ) ( ) ( )max ,0 max ,0

f f

f x f f
+ −

= − −14243 14243  

• , 0f f+ − ≥  

f dµ∫  for simple functions 

• Let ( ), ,X µF  be a measure space, :f X → ¡  is a simple function. Then 

( )
1

N

i i
i

fd a Eµ µ
=

= ∑∫ . 

• fdµ∫  does not depend on the representation. 

1 1
i i

N M

i E i F
i i

f a bχ χ
= =

= =∑ ∑  iE X⊂ , ∈ F , and disjoint, iF X⊂ ,∈ F , and disjoint,  , 0i ia b ≠  

⇒ ( ) ( )
1 1

N M

i i j j
i j

fd a E b Fµ µ µ
= =

= =∑ ∑∫ . 

• Let f,g : X → ¡ , simple, 0f g≥ ≥ , then fd gdµ µ≥∫ ∫  



• Let ( ),X F  be a measurable space. :f X → ¡  is a simple function. Then,  

• f  is a simple function. 

Proof. 
1

i

N

i E
i

f a χ
=

= ∑  where iE X⊂ , ∈ F , and disjoint, 0ia ≠ . Let g f= .  

Then, g can be written as 
1

i

N

i E
i

g b χ
=

= ∑  where i ib a= . 0ia ≠ ⇒ 0i ib a= ≠ .  Also, 

we already have iE X⊂ , ∈ F , and disjoint because f is a simple function.  

• f d f dµ µ≤∫ ∫  

Proof. ( )
1 1

i

N N

i E i i
i i

f a fd a Eχ µ µ
= =

= ⇒ =∑ ∑∫ , and 
1

i

N

i E
i

f a χ
=

= ∑  ⇒ f dµ∫  = 

( )
1

N

i i
i

a Eµ
=

∑ . By triangle inequality, ( ) ( )
1 1

N N

i i i i
i i

a E a Eµ µ
= =

≤∑ ∑ . Also, because 

( ) 0iEµ ≥ , ( ) ( )i i i ia E a Eµ µ= .  

f dµ∫  

• Lebesgue approximate sums : Let :f X → ¡  measurable, f  ≥ 0, partition 

)1 1 2 1
0, , , , , 2 , 2 , 2 ,

2 2 2 2
n n n

n n n n n

       = − ∞            
…P . Then 

( ) )( )( )
22 1

1 1

0

1
, , 2 2 ,

2 2 2

n

n n
n n n n

k

k k k
L f f fµ µ

−
− −

=

   +   = + ∞        
∑P  

• ( ), n nL f s dµ= ∫P  where ( ) )( )

2

11

2 1

1 2 ,,0 2 2

2
2

n

n

n n

n
n n k k ffk

k
s x χ χ −−

−

 +   ∞ =   

= +∑  simple, ≥ 0. 

• ns f↗ . 

• Let 
1

,
2 2k n n

k k
I

+ =  
 for k = 0, …, 2 12 n− . )22

2 ,n
nI = ∞ . Then  

• ( ) ( ) ( )

2

1

2

0

inf
n

k
n k f I

k

s x I χ −

=

= ∑ . 

• ( ) ( ) ( )( )
22

1

0

, inf
n

n k k
k

L f I f Iµ −

=

= ∑P . 

• ( )inf
2k n

k
I =  

• Let ( ), ,X µF  be a measure space, :f X → ¡  measurable,  f  ≥ 0, define 



( )lim , nn
Lf d fµ

→∞
=∫ P [ ]0,∈ ∞  

• ( )lim , nn
L f

→∞
P  exists (allow +∞) 

Proof. ( ), n nL f s dµ= ∫P . Because ns f↗ , and 0ns ≥ , we have 1n ns d s dµ µ+≤∫ ∫ . 

Thus, the sequence ( )
1

n
n

s dµ
∞

=∫  is a monotone increasing sequence of real number. 

• Let :f X → ¡  simple f  ≥ 0. Then, ( )lim , nn
L f f dµ

→∞
= ∫P . 

• Let 
1

i

N

i E
i

f a χ
=

= ∑  where iE X⊂ , ∈ F , and disjoint, 0ia > , then 

( ) ( )
1

lim ,
N

n i in
i

L f f d a Eµ µ
→∞

=

= = ∑∫P . 

• Let f, g : X → ¡  measurable , x X∀ ∈  0 f g≤ ≤ , then  

• For ( ) ( ) ( ) ( )

2

1

2

0

inf
n

k

f
n k f I

k

s x I χ −

=

= ∑ , ( ) ( ) ( ) ( )

2

1

2

0

inf
n

k

g
n k g I

k

s x I χ −

=

= ∑ , we have x X∀ ∈  

( ) ( ) ( ) ( )f g
n ns x s x≥  

Proof. Consider any x X∈ . Then 0k∃  ( )
0kf x I∈  ⇒ ( ) ( ) ( )

0
inff

n ks x I= , and 1k∃  

( )
1k

g x I∈ ⇒ ( ) ( ) ( )1
infg

n ks x I= . Because f g≤ , 0 1k k≤  ⇒ ( ) ( )
0 1

inf infk kI I≤ . 

Hence, ( ) ( ) ( ) ( ) ( ) ( )
0 1

inf inff g
n k k ns x I I s x= ≤ = . 

• fd gdµ µ≤∫ ∫ . 

Proof. x X∀ ∈  ( ) ( ) ( ) ( )0 f g
n ns x s x≤ ≤  ⇒ ( ) ( ) ( ) ( ), ,f g

n n n nL f s d s d L gµ µ= ≤ =∫ ∫P P . 

Take lim n → ∞. 
• Let fk : X → ¡  measurable, 1 20 f f≤ ≤ ≤L 

• Let  g : X → ¡  simple function, x X∀ ∈  ( ) ( )lim 0kk
f x g x

→∞
≥ ≥ , then lim kk

f d gdµ µ
→∞

≥∫ ∫ . 

• Let x X∀ ∈  ( )lim k Bk
f x bχ

→∞
≥ , b > 0, B ∈ F , then ( )lim kk

f d b Bµ µ
→∞

≥∫ . 

• The monotone convergence theorem: Let 1 20 f f≤ ≤ ≤L, :kf X → ¡  measurable, 

x X∀ ∈  ( ) ( )lim kk
f x f x

→∞
=  ( ) pointwisekf f↗ , then lim kk

f d f dµ µ
→∞

=∫ ∫  

Proof. Because kf ’s are measurable, lim kk
f f

→∞
=  is measurable. 1) lim kk

f d f dµ µ
→∞

≤∫ ∫ : 

Because ,kf f  measurable, x X∀ ∈  0 kf f≤ ≤ , we have kf d fdµ µ≤∫ ∫ . Take lim as k 



→ ∞. 2) lim kk
f d f dµ µ

→∞
≥∫ ∫ : ns f↗ ; so ( ) ( ) ( )lim k nk

f x f x s x
→∞

= ≥  ⇒ 

( )lim ,k n nk
f d s d L fµ µ

→∞
≥ =∫ ∫ P . Take lime n → ∞. 


