Probability and Random Signals

MATH
$\sum_{k=0}^{n} k=\frac{n(n+1)}{2} ; \sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
$\sum_{k=0}^{\infty} \beta^{k}=\frac{1}{1-\beta} ;$ for $\|\beta\|<1$
$\left(\sum_{i=1}^{n} a_{i}\right)^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j}$
$\underline{x}^{T} A \underline{x}=\sum_{i=1}^{n} \sum_{j=1}^{n}[A]_{i, j} x_{i} x_{j}$
$e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \approx 1+x$
$e^{i x}=\cos (x)+i \sin (x)$
$\mathrm{n}!=\int_{0}^{\infty} e^{-t} t^{n} d t$
Le

Leibniz's Rule

$$
\frac{d}{d z}\left(\int_{a(z)}^{b(z)} f(x, z) d x\right)=b^{\prime}(z) \cdot f(b(z), z)-a^{\prime}(z) \cdot f(a(z), z)+\int_{a(z)}^{b(z)} \frac{\partial}{\partial z} f(x, z) d x
$$

Function $g(x)$ is nonnegative definite if

$$
\begin{aligned}
& (\forall n)\left(\forall x_{1} \ldots x_{n}\right)\left(\forall a_{1} \ldots a_{n}\right) \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j}^{*} g\left(x_{i}-x_{j}\right) \geq 0 \\
& \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \overline{g(x)}=\frac{1}{n} \sum_{i=1}^{n} g\left(x_{i}\right)
\end{aligned}
$$

Unit-impulse function δ or Dirac δ function

- $\delta(\mathrm{x})=\frac{d}{d x} U(x)$
- $\mathrm{U}(\mathrm{x})=\int_{-\infty}^{x} \delta(t) d t$
- $\int_{-\infty}^{\infty} g(t) \delta(t-a) d t=g(a)$

$$
\begin{aligned}
\frac{d}{d x} \int_{a}^{x} f(t) d t & =f(x) \\
\frac{d}{d x} \int_{a}^{v(x)} f(t) d t & =\frac{d v}{d x} \cdot \frac{d}{d v} \int_{a}^{v(x)} f(t) d t=v^{\prime}(x) f(v(x)) \\
\frac{d}{d x} \int_{u(x)}^{v(x)} f(t) d t & =\frac{d}{d x} \int_{a}^{v(x)} f(t) d t-\frac{d}{d x} \int_{a}^{u(x)} f(t) d t \\
& =v^{\prime}(x) f(v(x))-u^{\prime}(x) f(u(x))
\end{aligned}
$$

SET

(with the major exception of the sample space) an unordered collection of distinct elements/members

- $\in \Rightarrow$ set membership or being an element of the set - undefined
- $\notin \Rightarrow$ not an element of
$\varnothing=\{ \}=$ empty/null set $=(\mathrm{a}, \mathrm{a})$
cardinality $=$ \#elements in a set \rightarrow
- $\mathbf{N}_{\mathbf{n}}=\{0,1,2, \ldots, \mathrm{n}-1\}$
- $\mathbf{Z}=\{0, \pm 1, \pm 2, \ldots\}$
- $\mathbf{Z}^{+}=\{1,2,3, \ldots\}$
- $\mathbf{N}=\{0,1,2,3, \ldots\}$
- $R=\{x:-\infty<x<\infty\}$
- countably infinite set \Rightarrow has exactly as many members as there
are integers

$$
\circ \mathrm{Z}, \mathrm{Z}^{+}, \mathrm{N}
$$

- inclusion: A is a subset of B

$$
A \subset B \leftrightarrow\{\forall \omega, \omega \in A \rightarrow \omega \in B\}
$$

- $B \supset A: \mathrm{B}$ is a superset of A :
- Identity/Equality: A, B are equal

$$
A=B \leftrightarrow\{A \subset B \wedge B \subset A\}
$$

- Reflexivity: $\mathrm{A} \subset \mathrm{A}$
- Transitivity: $A \subset B \wedge B \subset C \rightarrow A \subset C$

Boolean set operation

- complementation $A^{C}, A^{\prime}, \bar{A}=\{\omega: \omega \notin A\}$
- union $A \cup B=\{\omega: \omega \in A \vee \omega \in B\}$
- intersection $A \cap B=\{\omega: \omega \in A \wedge \omega \in B\}$
- difference $A-B=A \cap B^{c}=\{\omega: \omega \in A \wedge \omega \notin B\}$
event language
- $\mathrm{A} \rightarrow \mathrm{A}$ occurs
- $\mathrm{A}^{\mathrm{c}} \rightarrow \mathrm{A}$ does not occur
- $\mathrm{A} \cup \mathrm{B} \rightarrow$ either A or B occur
- $\mathrm{A} \cap \mathrm{B} \rightarrow$ both A and B occur
- disjoint: $A \perp B \Leftrightarrow A \cap B=\varnothing$
- pair-wise disjoint, mutually exclusive:
for $\left\{A_{k}\right\}, A_{i} \cap A_{j}=\varnothing$ when $i \neq j$
- indempotence: $\left(\mathrm{A}^{\mathrm{c}}\right)^{\mathrm{c}}=\mathrm{A}$
- commutativity (symmetry): $A \cup B=B \cup A, A \cap B=B \cap A$
- associativity:

$$
\begin{array}{ll}
\circ & A \cap(B \cap C)=(A \cap B) \cap C \\
\circ & A \cup(B \cup C)=(A \cup B) \cup C
\end{array}
$$

- distributivity
$\circ \quad A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$\circ \quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

- de Morgan laws

- $(A \cup B)^{c}=A^{c} \cap B^{c}$
- $(A \cap B)^{c}=A^{c} \cup B^{c}$

Partition

$\Pi=\left\{\mathrm{B}_{\mathrm{i}}\right\}$ is a partition of Ω

- if and only if
- $\Omega=\bigcup B_{i}$ and
- $B_{i} \perp B_{j}$ when $\mathrm{i} \neq \mathrm{j}$
- $\rightarrow B_{i} \perp B_{j} \rightarrow A \cap B_{i} \perp A \cap B_{j}$
- $\rightarrow \mathrm{A}=\bigcup_{i}\left(A \cap B_{i}\right)$
- $\mathrm{P}\left(\mathrm{B}_{\mathrm{i}}\right)=0 \rightarrow \mathrm{P}\left(\mathrm{A} \mid \mathrm{B}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{B}_{\mathrm{i}}\right)=0$

The sequence of events $\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots\right\}$ is monotone-increasing sequence of events if and only if
$\mathrm{A}_{1} \subset \mathrm{~A}_{2} \subset \mathrm{~A}_{3} \subset \ldots$

- $\bigcup_{i=1}^{n} A_{i}=\mathrm{A}_{\mathrm{n}}$
- $\lim _{n \rightarrow \infty} A_{n}=\bigcup_{i}^{\infty} A_{i}$

The sequence of events $\left\{\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \ldots\right\}$ is monotone-decreasing sequence of events if and only if
$B_{1} \supset B_{2} \supset B_{3} \supset \ldots$

- $\bigcap_{i=1}^{n} B_{i}=\mathrm{B}_{\mathrm{n}}$
- $\lim _{n \rightarrow \infty} B_{n}=\bigcap_{i=1}^{\infty} B_{i}$
(event-) indicator function

$$
\begin{aligned}
& I_{A}: \Omega \rightarrow\{0,1\} \\
& I_{A}(\omega)=\left\{\begin{array}{l}
1, \text { if } \omega \in \mathrm{A} \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- $A=\left\{\omega: I_{A}(\omega)=1\right\}$
- $A=B \Leftrightarrow I_{A}=I_{B}$
- $\quad I_{A^{c}}(\omega)=1-I_{A}(\omega)$
- $A \subset B \Leftrightarrow\left\{\forall \omega, I_{A}(\omega) \leq I_{B}(\omega)\right\} \Leftrightarrow\left\{\forall \omega, I_{A}(\omega)=1 \rightarrow I_{B}(\omega)=1\right\}$
- $\quad I_{A \cap B}(\omega)=\min \left(I_{A}(\omega), I_{B}(\omega)\right)=I_{A}(\omega) \cdot I_{B}(\omega)$
- $\quad I_{A \cup B}(\omega)=\max \left(I_{A}(\omega), I_{B}(\omega)\right)=I_{A}(\omega)+I_{B}(\omega)-I_{A}(\omega) \cdot I_{B}(\omega)$

Enumeration / Combinatorics / Counting

Given a set of n distinct items, select a distinct ordered sequence
(word) of length r drawn from this set

- Sampling with replacement

$$
\mu_{\mathrm{n}, \mathrm{r}}=\mathrm{n}^{\mathrm{r}}
$$

- $\mu_{\mathrm{n}, 1}=\mathrm{n}$
- $\mu_{1, \mathrm{r}}=1$
- $\mu_{\mathrm{n}, \mathrm{r}}=\mu_{\mathrm{n}, \mathrm{r}-1}$ for $\mathrm{r}>1$
- $\|\Omega\|=r \rightarrow \|$ power set $\|=\| 2^{\Omega} \|=2^{\|\Omega\|}$
- Ex. \#binary string of length $r=2^{r}$
- Sampling without replacement

$$
\begin{aligned}
& (\mathrm{n})_{\mathrm{r}}=\prod_{i=0}^{r-1}(n-i)=\frac{n!}{(n-r)!}=\underbrace{n \cdot(n-1) \cdots(n-(r-1))}_{\mathrm{r} \text { terms }} ; \mathrm{r} \leq \mathrm{n} \\
& \circ=0 \text { if } \mathrm{r}>\mathrm{n} \\
& \circ \quad(\mathrm{n})_{1}=\mathrm{n} \\
& \circ \quad(\mathrm{n})_{\mathrm{r}}=(\mathrm{n}-(\mathrm{r}-1))(\mathrm{n})_{\mathrm{r}-1}
\end{aligned}
$$

$$
\text { - Ex. }(7)_{5}=(7-4)(7)_{4}
$$

$$
\bigcirc \quad(1)_{r}=\left\{\begin{array}{l}
1 \text { if } \mathrm{r}=1 \\
0 \text { if } \mathrm{r}>1
\end{array}\right.
$$

$$
\begin{aligned}
\frac{(n)_{r}}{n^{r}} & =\frac{\prod_{i=0}^{r-1}(n-i)}{\prod_{i=0}^{r-1}(n)}=\prod_{i=0}^{r-1}\left(1-\frac{i}{n}\right) \approx \prod_{i=0}^{r-1}\left(e^{-\frac{i}{n}}\right)=e^{-\frac{1}{n} \sum_{i=0}^{r-1} i}=e^{-\frac{r(r-1)}{2 n}} \\
& \approx e^{-\frac{r^{2}}{2 n}}
\end{aligned}
$$

The number of arrangements (permutations) of $\mathrm{n} \geq 0$ distinct items
$(\mathrm{n})_{\mathrm{n}}=\mathrm{n}$!
$0!=1!=1$
$\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)$!
$\mathrm{n}!=\int_{0}^{\infty} e^{-t} t^{n} d t$
Stirling's Formula: $\mathrm{n}!\approx \sqrt{2 \pi n} n^{n} e^{-n}=(\sqrt{2 \pi e}) e^{\left(n+\frac{1}{2}\right) \ln \left(\frac{n}{e}\right)}$
binomial coefficient

$$
\binom{n}{r}=\frac{(n)_{r}}{r!}=\frac{n!}{(n-r)!r!}
$$

- the number of unordered sets of size r drawn from an alphabet of size n without replacement
- the number of subsets of size r that can be formed from a set of n elements
- reflection property: $\binom{n}{r}=\binom{n}{n-r}$
- $\binom{n}{n}=\binom{n}{0}=1$
- $\binom{n}{1}=\binom{n}{n-1}=n$
- $\binom{n}{r}=0$ if $\mathrm{n}<\mathrm{r}$
- $\max _{r}\binom{n}{r}=\left(\left\lfloor\frac{n}{2}\right\rfloor\right)$

Binomial theorem

$(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r} y^{n-r}$

- let $\mathrm{x}=\mathrm{y}=1 \rightarrow \sum_{r=0}^{n}\binom{n}{r}=2^{n}$

Entropy function
$\mathrm{H}(\mathrm{p})=-p \log _{b}(p)-(1-p) \log _{b}(1-p)$

- binary: b=2
$\mathrm{H}_{2}(\mathrm{p})=-p \log _{2}(p)-(1-p) \log _{2}(1-p)$
- $\binom{n}{r} \approx 2^{n H_{2}\left(\frac{r}{n}\right)}$
- $\frac{1}{n+1} 2^{n H\left(\frac{r}{n}\right)} \leq\binom{ n}{r} \leq 2^{n H\left(\frac{r}{n}\right)}$

Multinomial Counting

$$
\begin{aligned}
\binom{n}{n_{1} n_{2} \ldots n_{r}} & =\prod_{i=1}^{r}\binom{n-\sum_{k=0}^{i-1} n_{k}}{n_{i}} \\
& =\binom{n}{n_{1}} \cdot\binom{n-n_{1}}{n_{2}} \cdot\binom{n-n_{1}-n_{2}}{n_{3}} \cdots\binom{n_{r}}{n_{r}}=\frac{n!}{\prod_{i=1}^{r} n!}
\end{aligned}
$$

- Arrange $\mathrm{n}=\sum_{i=1}^{r} n_{i}$ tokens when having r types of symbols and n_{i} indistinguishable copies/tokens of a type i symbol
- multinomial coefficient

Multinomial Theorem

$$
\left(x_{1}+\ldots+x_{r}\right)^{n}=\sum_{i_{1}=0}^{n} \sum_{i_{2}=0}^{n-i_{1}} \cdots \sum_{i_{r-1}=0}^{n-\sum_{j<r-1} i_{j}} \frac{n!}{\left(n-\sum_{k<n} i_{k}\right) \prod_{k<n} i_{k}!} x_{r}^{n-\sum_{j<r} i_{j}} \prod_{k=1}^{r-1} x_{k}^{i_{k}}
$$

r -ary entropy function

- $\mathrm{p}_{\mathrm{i}} \geq 0$
- $\sum_{i=1}^{r} p_{i}=1$
$H(\underline{p})=-\sum_{i=1}^{r} p_{i} \log _{b} p_{i}$
Let $p_{i}=\frac{n_{i}}{n}$
- $\sum_{i=1}^{r} p_{i}=\sum_{i=1}^{r} \frac{n_{i}}{n}=\frac{1}{n} \sum_{i=1}^{r} n_{i}=1$
$\frac{n!}{\prod_{i=1}^{r} n_{i}!} \approx 2^{n H_{2}(\underline{p})}$
bars and stars
- Ex. distribution of $\mathrm{r}=10$ balls into $\mathrm{n}=5$ cells
- \quad ****|*** $\|\left.^{* *}\right|^{*} \Rightarrow(4,3,0,2,1)$
- $\mathrm{n}-1$ bars ; r stars
- $\#\{$ distinguishable arrangements $\}=\binom{n-1+r}{r}=\binom{n-1+r}{n-1}$

CLASSICAL PROBABILITY

random experiment ($\Omega, \mathcal{A}, \mathrm{P}$)
Equipossibility

- The bases for indentifying equipossibility were
- physical symmetry
- balance of information
- meaningful only for finite sample space
selected at random \Rightarrow equipossible cases
The classical probability of an event A
$P(A)=\frac{\|A\|}{\|\Omega\|}$
$=\underline{\text { The number of cases favorable to the outcome of the event }}$
- $\mathrm{P}(\mathrm{A}) \geq 0$
- $\mathrm{P}(\Omega)=1$
- $\mathrm{P}(\varnothing)=0$
- $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)=1-\mathrm{P}(\mathrm{A})$
- $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
- $\|A \cup B\|=\|A\|+\|B\|-\|A \cap B\|$
- $\mathrm{A} \perp \mathrm{B} \rightarrow \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
- $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)=1-\mathrm{P}(\mathrm{A})$
- $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}, \mathrm{P}\left(\left\{\omega_{\mathrm{i}}\right\}\right)=\frac{1}{n} \rightarrow P(A)=\sum_{\omega \in A} p(\omega)$
- The probability of an event is equal to the sum of the probabilities of its component outcomes because
outcomes are mutually exclusive

Chevalier de Mere's Scandal of Arithmetic

A = obtaining at least one six in four tosses of a fair die
$\mathrm{P}(\mathrm{A})=1-\left(\frac{5}{6}\right)^{4}=.518$
$\mathrm{B}=$ obtaining at least double-six in 24 tosses of a pair dice
$\mathrm{P}(\mathrm{B})=1-\left(\frac{35}{36}\right)^{24}=.491$

Probability of coincidence birthday

Probability that two people in your class have the same birthday
$=1$ if $n \geq 365$
$=1-(\underbrace{\frac{365}{365} \cdot \frac{364}{365} \cdots \cdot \frac{365-(n-1)}{365}}_{\text {n terms }})$ if $0 \leq \mathrm{n} \leq 365$

Conditional Probability

Classical Conditional Probability

- Given that event $\mathrm{B} \neq \varnothing$ occurred
- Conditional Probability of A given B:

$$
\begin{aligned}
P(A \mid B) & =\frac{\|A \cap B\|}{\|B\|} \\
& =\frac{\frac{\|A \cap B\|}{\|\Omega\|}}{\frac{\|B\|}{\|\Omega\|}}=\frac{P(A \cap B)}{P(B)}
\end{aligned}
$$

$=$ the updated probability of the event A
given that we now know that B occurred.

- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B} \mid \mathrm{B}) \geq 0$
- $\mathrm{P}(\Omega \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{B})=\mathrm{P}\left(\mathrm{A}_{\supset \mathrm{B}} \mid \mathrm{B}\right)=1$
- If $A \perp C$,

$$
\begin{aligned}
P(A \cup C \mid B) & =\frac{P((A \cup C) \cap B)}{P(B)}=\frac{P((A \cap B) \cup(A \cap C))}{P(B)} \\
& =\frac{P(A \cap B)+P(A \cap C)}{P(B)} \\
& =P(A \mid B)+P(C \mid B)
\end{aligned}
$$

- $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{A} \mid \mathrm{B})$
- $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \mathrm{P}(\mathrm{A} \mid \mathrm{B})$

Multiplication/Sequence Theorem :
$P\left(\bigcap_{i=1}^{n} A_{i}\right)=P\left(A_{1}\right) \prod_{i=2}^{n} P\left(A_{i} \bigcap_{j<i} A_{j}\right)$
$\mathrm{n}=2 \rightarrow$ definition of conditional probability
Let $\mathrm{B}=\bigcap_{i=1}^{n} A_{i}$

$$
P\left(\bigcap_{i=1}^{n+1} A_{i}\right)=P\left(B \cap A_{n+1}\right)=P\left(A_{n+1} \mid B\right) P(B)
$$

$$
=P\left(A_{n+1} \mid B\right) P\left(A_{1}\right) \prod_{i=2}^{n} P\left(A_{i} \bigcap_{j<i} A_{j}\right)
$$

$$
=P\left(A_{1}\right)\left\{P\left(A_{n+1} \mid \bigcap_{i=1}^{n} A_{i}\right) \prod_{i=2}^{n} P\left(A_{i} \bigcap_{j<i} A_{j}\right)\right\}
$$

$$
=P\left(A_{1}\right) \prod_{i=2}^{n+1} P\left(A_{i} \bigcap_{j<i} A_{j}\right)
$$

- $\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$
$=\mathrm{P}((\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C})=\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \times \mathrm{P}(\mathrm{C} \mid \mathrm{A} \cap \mathrm{B})$
$=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B} \mid \mathrm{A}) \times \mathrm{P}(\mathrm{C} \mid \mathrm{A} \cap \mathrm{B})$
- $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{a+b+d+e}{n} \cdot \frac{e+a}{a+b+d+e}=\frac{e+a}{n}$
- $\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \times \mathrm{P}(\mathrm{C} \mid \mathrm{A} \cap \mathrm{B})=\frac{a+e}{n} \cdot \frac{a}{a+e}=\frac{a}{n}$

Markov process

- a causal chain in which event A_{i} is produced solely by its temporal predecessor $\mathrm{A}_{\mathrm{i}-1}$
- $P\left(A_{i} \mid \bigcap_{j<i} A_{j}\right)=P\left(A_{i} \mid A_{i-1}\right) ; \forall \mathrm{i}>1$

Total Probability Theorem
Assumption:

- $\Pi=\left\{B_{i}\right\}$ is a partition of Ω
- $\mathrm{P}\left(\mathrm{B}_{\mathrm{i}}\right)=0 \rightarrow \mathrm{P}\left(\mathrm{A} \mid \mathrm{B}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{B}_{\mathrm{i}}\right)=0$

Result:

- $\mathrm{P}(\mathrm{A})=\sum_{i} P\left(A \mid B_{i}\right) P\left(B_{i}\right)$
- Urn models: n urns \Rightarrow partition of Ω
each urn U_{i} has $a_{1 i}+a_{2 i}+a_{3 i}+\ldots+a_{p i}=n_{i}$
- $\mathrm{P}\left(\mathrm{U}_{\mathrm{i}}\right)=\frac{1}{n}$ if equally possible
- $\mathrm{P}\left(\mathrm{a}_{\mathrm{j} \mid} \mid \mathrm{U}_{\mathrm{i}}\right)=\frac{a_{j i}}{n_{i}}$

$$
\begin{aligned}
P\left(E_{j}\right)=\sum_{k}\left\{P\left(E_{j} \cap C_{k}\right)\right\}= & \sum_{k}\left\{P\left(E_{j} \mid C_{k}\right) P\left(C_{k}\right)\right\} \\
\sum_{k}\left\{P\left(E_{j} \mid C_{k}\right) P\left(C_{k}\right)\right\} & =\sum_{k}\left(\frac{\left\|E_{j} \cap C_{k}\right\|\left\|C_{k}\right\|}{\left\|C_{k}\right\|} \frac{\|C\|}{\| C}\right) \\
& =\sum_{k}\left(\frac{\left\|E_{j} \cap C_{k}\right\|}{\|C\|}\right) \\
& =\frac{1}{\|C\|} \sum_{k}\left(\left\|E_{j} \cap C_{k}\right\|\right) \\
& =\frac{\left\|E_{j}\right\|}{\|C\|}=\frac{\left\|E_{j}\right\|}{\|E\|}
\end{aligned}
$$

2

$$
\begin{aligned}
P\left(C_{i} \mid E_{j}\right) & =\frac{P\left(C_{i} \cap E_{j}\right)}{P\left(E_{j}\right)}=\frac{\left\|C_{i} \cap E_{j}\right\|}{\left\|E_{j}\right\|} \\
& =\frac{P\left(E_{j} \mid C_{i}\right) P\left(C_{i}\right)}{P\left(E_{j}\right)}=\frac{P\left(E_{j} \mid C_{i}\right) P\left(C_{i}\right)}{\sum_{k}\left\{P\left(E_{j} \mid C_{k}\right) P\left(C_{k}\right)\right\}}
\end{aligned}
$$

Monte Hall's Game

- Started with showing a contestant 3 closed doors behind of which was a prize
- The contestant selected a door
- but before the door was opened, Monte Hall, who knew which door hid the prize, opened a remaining door.
- The contestant was then allowed to either stay with his original guess or change to the other closed door.
- Question: better to stay or to switch
$\mathrm{R}=$ right door ; $\mathrm{S}=$ switch door
We will find $\mathrm{P}(\mathrm{R} \mid \mathrm{S})$;
Case 1: $\mathrm{C}_{1}: \mathrm{P}(\mathrm{R})=\frac{1}{3}, \mathrm{P}(\mathrm{R} \mid \mathrm{S})=0$

Case 2: $\mathrm{C}_{2}: \mathrm{P}\left(\mathrm{R}^{\mathrm{c}}\right)=\frac{2}{3}, \mathrm{P}(\mathrm{R} \mid \mathrm{S})=1$
$\therefore \mathrm{P}(\mathrm{R} \mid \mathrm{S})=\frac{1}{3}(0)+\frac{2}{3}(1)=\frac{2}{3}$

False positives on Diagnostic Tests

- D = Have a disease
- + = positive test
- $p_{D}=$ probability of having disease
- $\mathrm{P}(+\mid \mathrm{D})=1 \Rightarrow$
- $P\left(+{ }^{\mathrm{c}} \mid \mathrm{D}\right)=0$
\circ have disease \rightarrow always positive result
- $\mathrm{P}\left(+\mid \mathrm{D}^{\mathrm{C}}\right)=\mathrm{p}_{+}=$not have disease \rightarrow positive result

	D	$\mathrm{D}^{\text {c }}$	
+	$\begin{aligned} & \mathrm{P}(+\cap \mathrm{D}) \\ & =\mathrm{P}(+\mid \mathrm{D}) \mathrm{P}(\mathrm{D}) \\ & =1\left(\mathrm{p}_{\mathrm{D}}\right)=\mathrm{p}_{\mathrm{D}} \end{aligned}$	$\begin{aligned} & \mathrm{P}\left(+\cap \mathrm{D}^{\mathrm{c}}\right) \\ & =\mathrm{P}\left(+\mid \mathrm{D}^{\mathrm{c}}\right) \mathrm{P}\left(\mathrm{D}^{\mathrm{c}}\right) \\ & =\mathrm{p}_{+}\left(1-\mathrm{p}_{\mathrm{D}}\right) \end{aligned}$	$\begin{aligned} & \mathrm{P}(+) \\ & =\mathrm{P}(+\cap \mathrm{D})+\mathrm{P}\left(+\cap \mathrm{D}^{\mathrm{c}}\right) \\ & =\mathrm{p}_{\mathrm{D}}+\mathrm{p}_{+}\left(1-\mathrm{p}_{\mathrm{D}}\right) \end{aligned}$
$+^{\text {c }}$	$\begin{aligned} & \mathrm{P}\left(+^{\mathrm{c}} \cap \mathrm{D}\right) \\ & =\mathrm{P}\left(+^{\mathrm{c}} \mid \mathrm{D}\right) \mathrm{P}(\mathrm{D}) \\ & =0\left(\mathrm{p}_{\mathrm{D}}\right)=0 \end{aligned}$	$\begin{aligned} & \mathrm{P}\left(+^{\mathrm{c}} \cap \mathrm{D}^{\mathrm{c}}\right) \\ & =\mathrm{P}\left(++^{\mathrm{c}} \mid \mathrm{D}^{\mathrm{c}}\right) \mathrm{P}\left(\mathrm{D}^{\mathrm{c}}\right) \\ & =\left(1-\mathrm{p}_{+}\right)\left(1-\mathrm{p}_{\mathrm{D}}\right) \end{aligned}$	$\begin{aligned} & \mathrm{P}\left(+^{\mathrm{c}}\right) \\ & =\mathrm{P}\left(+^{\mathrm{c}} \cap \mathrm{D}\right)+\mathrm{P}\left(+^{\mathrm{c}} \cap \mathrm{D}^{\mathrm{c}}\right) \\ & =\left(1-\mathrm{p}_{+}\right)\left(1-\mathrm{p}_{\mathrm{D}}\right) \end{aligned}$
	$\begin{aligned} & \mathrm{P}(\mathrm{D}) \\ & =\mathrm{P}(+\cap \mathrm{D})+\mathrm{P}\left(+{ }^{\mathrm{c}} \cap \mathrm{D}\right) \\ & =\mathrm{p}_{\mathrm{D}} \end{aligned}$	$\begin{aligned} & \mathrm{P}\left(\mathrm{D}^{\mathrm{c}}\right) \\ & =\mathrm{P}\left(+\cap \mathrm{D}^{\mathrm{c}}\right)+\mathrm{P}\left(+^{\mathrm{c}} \cap \mathrm{D}^{\mathrm{c}}\right) \\ & =1-\mathrm{p}_{\mathrm{D}} \end{aligned}$	$\mathrm{P}(\Omega)=1$

$$
P(D \mid+)=\frac{P(D \cap+)}{P(+)}=\frac{p_{D}}{p_{D}+p_{+}\left(1-p_{D}\right)}=\frac{1}{1+\frac{p_{+}}{p_{D}}\left(1-p_{D}\right)}
$$

$$
\approx \frac{P_{D}}{P_{+}} ; \text {for rare disease }\left(\mathrm{p}_{\mathrm{D}} \ll 1\right)
$$

Probability Foundations

propensity view of probability

The probability $\mathrm{P}(\mathrm{A})$ of the event A is a numerical measure of the propensity or tendency of the event A to occur in a (not necessarily repeatable) performance of a random experiment \mathcal{E}

- For indefinitely repeatable experiments, probabilistic propensity is displayed in the long-run relative frequency of the occurrence of A in n repeated, unlinked performances $\mathcal{E}_{1, \ldots, \mathcal{E}_{\mathrm{n}}}$ of the random experiment \mathcal{E}

Sample point

A representation of a possible outcome of an experiment.
Sample space : Ω

- set of all possible outcomes of the experiment
- do so without duplication
- at a level of detail sufficient for our interests
- this list is complete in a practical sense, albeit usually not complete either regarding all logically or physically possible outcomes
Event \Rightarrow an outcome or a collection of outcomes.
(Event) Algebra / Field \mathcal{A}
(1) a collection/class of subsets of Ω
(2) closed under
- 1) complementation
- 2) finite union
- σ-field/algebra if closed under complementation and countable union.
- $\Omega, \varnothing \in \mathcal{A}$
- closed under
- finite intersection
- difference
- The smallest $\mathcal{A}=\{\Omega, \varnothing\}$
- The largest $\mathcal{A}=2^{\Omega}$
- Why not all subsets?
- If Ω is finite, too large
- If Ω is not finite, may not be able to assign a probability

to all possible subsets.

- Intersections of Algebra is an algebra
- Relative frequency of an event A
$r_{n}(A)=\frac{1}{n} \sum_{1}^{n} I_{A}\left(\omega_{i}\right)=\frac{N_{n}(A)}{n}$
RF0 $\quad r_{n}: \mathcal{A} \rightarrow$
RF1 $\quad r_{n}(A) \geq 0$
RF2 $\quad \mathrm{r}_{\mathrm{n}}(\Omega)=1$
RF3 $\quad A \perp B \Rightarrow r_{n}(A \cup B)=r_{n}(A)+r_{n}(B)$

Kolmogorov's Axioms for probability

K0 Setup

$$
\mathrm{P}: \mathcal{A} \rightarrow \mathfrak{R}
$$

K1 Nonnegativity

$$
\mathrm{P}(\mathrm{~A}) \geq 0
$$

K2 Unit normalization

$$
\mathrm{P}(\Omega)=1
$$

K3 Finite additivity

$$
\mathrm{A} \perp \mathrm{~B} \Rightarrow \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})
$$

- The above axioms suffice when sample space has finite number of sample points
K4 Monotone continuity

$$
\mathrm{A}_{\mathrm{i}+1} \subset \mathrm{~A}_{\mathrm{i}} \text { and } \bigcap_{i} A_{i}=\phi \Rightarrow \lim _{i \rightarrow \infty} P\left(A_{i}\right)=0
$$

K4 ${ }^{\prime} \quad$ Countable or σ-additivity

$$
\left\{\mathrm{i} \neq \mathrm{j} \Rightarrow \mathrm{~A}_{\mathrm{i}} \perp \mathrm{~A}_{\mathrm{j}}\right\} \Rightarrow P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

- K4, K4' Equivalence:

If P satisfies K0-K3, then
it satisfies K4' if and only if it satisfies K4
probability measure \Leftrightarrow satisfies K0 - K4

- $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)=1-\mathrm{P}(\mathrm{A})$
- $\mathrm{P}(\varnothing)=0$
- $0 \leq \mathrm{P}(\mathrm{A}) \leq 1$
- If $\mathrm{P}(\mathrm{A})=1, \mathrm{~A}$ is not necessary Ω.
- $\mathrm{A} \supset \mathrm{B} \Rightarrow \mathrm{P}(\mathrm{A}) \geq \mathrm{P}(\mathrm{B})$
- $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B}) \geq \max (\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B})) \geq \min (\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B})) \geq \mathrm{P}(\mathrm{A} \cap \mathrm{B})$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- Finite Disjoint Unions:

$$
\mathrm{i} \neq \mathrm{j}, \mathrm{~A}_{\mathrm{i}} \perp \mathrm{~A}_{\mathrm{j}} \Rightarrow P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)
$$

- Countable Disjoint Unions:

$$
\mathrm{i} \neq \mathrm{j}, \mathrm{~A}_{\mathrm{i}} \perp \mathrm{~A}_{\mathrm{j}} \Rightarrow P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

- If $\Pi=\left\{\mathrm{A}_{\mathrm{i}}\right\}=$ countable partition of Ω, then

$$
\mathrm{P}(\mathrm{~B})=\sum_{i} P\left(B \cap A_{i}\right)
$$

- Boole's Inequality:

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)
$$

- Inclusion-Exclusion Principle

$$
\begin{aligned}
P\left(\bigcup_{i=1}^{n} A_{i}\right)= & \sum_{\phi \neq I \subset\{11, \ldots, n\}}(-1)^{|I| \mid+1} P\left(\bigcap_{i \in I} A_{i}\right) \\
P\left(A_{1} \cup A_{2} \cup A_{3}\right)= & P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right) \\
& -P\left(A_{1} \cap A_{2}\right)-P\left(A_{1} \cap A_{3}\right)-P\left(A_{2} \cap A_{3}\right) \\
& +P\left(A_{1} \cap A_{2} \cap A_{3}\right)
\end{aligned}
$$

- Given a common event algebra \mathcal{A}, probability measures
$\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{m}}$, and the numbers $\lambda_{1}, \ldots, \lambda_{\mathrm{m}}, \lambda_{\mathrm{i}} \geq 0, \sum_{1}^{m} \lambda_{i}=1$
a convex combination $\mathrm{P}(\mathrm{A})=\sum_{1}^{m} \lambda_{i} P_{i}(A)$ of probability
measures $\left\{\mathrm{P}_{\mathrm{i}}\right\}$ is a probability measure
A formal definition of probability involves the specification of
- Ω
- \mathcal{A}
- A set function P which is defined on the elements of \mathcal{A} and which has the properties specified by Kolmogorov's Axioms
- A probability assignment which is consistent with Kolmogorov's Axioms can always be made to the elements of a σ-algebra.
Probability space $\Rightarrow(\Omega, \mathcal{A}, \mathrm{P})$
PMF: Probability Mass Function
pdf for finite or countably infinite $\Omega=\left\{\omega_{1}\right\}$
pmf
(1) $\mathrm{p}: \Omega \rightarrow[0,1]$
(2) $\sum_{\omega \in \Omega} p(\omega)=1$
when enumerated, $\mathrm{p}\left(\omega_{\mathrm{I}}\right)=\mathrm{p}_{\mathrm{i}}$
- $\mathrm{p}(\omega)=\mathrm{P}(\{\omega\})$
- $\mathrm{P}(\mathrm{A})=\sum_{\omega \in A} p(\omega)$
- convex combination of pmfs $\sum_{i} \lambda_{i} p^{(i)}(\omega)$ is a pmf
- Random $\mathcal{R}_{\mathrm{n}}: \mathrm{p}_{\mathrm{i}}=\frac{1}{n}$ for $\Omega=\mathrm{N}_{\mathrm{n}}$
- classical game of chance / classical probability drawing at random
- fair gaming devices (well-balanced coins and dice, well shuffled decks of cards)
- high-rate coded digital data
- experiment where
- there are only n possible outcomes and they are all equally probable
- there is a balance of information about outcomes
- Bernoulli
- $\Omega=\{0,1\}$
- $\mathrm{p}_{0}=1-\mathrm{p}$
- $\mathrm{p}_{1}=\mathrm{p}$
- $\equiv \mathcal{B}(1, \mathrm{p})$
- Binomial $\mathcal{\mathcal { B } (\mathrm { n } , \mathrm { p }) : p _ { i } = (\begin{array} { l } { n } \\ { i } \end{array}) ^ { p ^ { \prime } (1 - p) ^ { n - i } } \text { ; for } \Omega = \mathrm { N } _ { n + 1 } , ~ (1)}$
$0 \leq \mathrm{p} \leq 1 \Rightarrow$ probability of single occurrence of $\mathrm{A}=\mathcal{B}(1,1)$
- If have $\mathcal{E}_{1}, \ldots, \mathcal{E}_{\mathrm{n}} \mathrm{n}$ unlinked repetition of \mathcal{E} and event A for E
$\mathcal{B}(\mathrm{n}, \mathrm{p})=$ the probability that A occurs k times in $\mathcal{E}_{1}, \ldots, \mathcal{E}_{\mathrm{n}}$
- maximum probability value $\mathrm{k}=\lfloor(n+1) p\rfloor \approx \mathrm{np}$
(Average \#errors)
- $\beta\left(1, \frac{1}{2}\right) \Rightarrow$ binomial that also random
o \#heads in n toss of a coin ($p=0.5$)
o \#errors in n symbols of text ($\mathrm{p}=$ the probability of an error in a single symbol of text)
- Geometric $\mathcal{G}(\beta): \mathrm{p}_{\mathrm{i}}=(1-\beta) \beta^{i} ; \Omega=\mathrm{N}, 0 \leq \beta<1$
- $\beta=\frac{m}{m+1}, \mathrm{~m}=$ mean/average waiting time/ lifetime
- $\quad \mathrm{P}(\mathrm{X}=\mathrm{k})=\mathrm{P}\{\mathrm{k}$ failures followed by a success \}
$=\mathrm{P}^{\mathrm{k}}$ \{failure $\} \mathrm{P}\{$ success $\}$
o lifetimes of components, measured in discrete time units, when the fail catastrophically (without degradation due to aging)
o waiting times
- for next customer in a queue
- between radioactive disintegrations
- between photon emission
o number of repeated, unlinked random experiments that must be performed prior to the first occurrence of a given event A
- number of coin tosses prior to the first appearance of a 'head'
- number of trials required to observe the first success
- Poisson $\mathcal{P}(\lambda): \mathrm{p}_{\mathrm{i}}=e^{-\lambda} \frac{\lambda^{i}}{i!} ; \Omega=\mathrm{N}, 0 \leq \lambda$
- $\lambda=$ mean/average \#counts $=$ IT
- $\mathrm{T}=$ observation time
- I = an event intensity / rate of occurrence / current
- most probable value $\mathrm{i}=\lfloor\lambda\rfloor$, peak value $p_{\lfloor\lambda\rfloor} \approx \frac{1}{\sqrt{2 \pi \lambda}}$
- i.i.d. $\mathrm{N}_{\mathrm{k}} \sim \mathcal{P}\left(\lambda_{\mathrm{k}}\right) \rightarrow \mathrm{N}=\sum N_{k} \sim \mathcal{P}\left(\sum \lambda_{\mathrm{k}}\right)$
- rare events limit of the binomial (large n, small b_{n}) let b_{n} depend on n and $\lim _{n \rightarrow \infty} n b_{n}=\lambda>0$ then
$\mathrm{b}_{\mathrm{n}} \rightarrow 0$
$\lim _{n \rightarrow \infty}\binom{n}{i} b^{i}(1-b)^{n-i}=e^{-\lambda} \frac{\lambda^{i}}{i!}$
o \#photons emitted by a light source of intensity I
[photons/second] in time T $(\lambda=$ IT $)$
o \#atoms of radioactive material of mass m undergoing decay in time $T(\lambda \propto m T)$
o \#clicks in a Geiger counter in T seconds when the average number of click in 1 second is I
o \#dopant atoms deposited to make a small device such as an FET
o \#customers arriving in a queue or workstations requesting service from a file server in time $\mathrm{T}(\lambda \propto \mathrm{T})$
o number of occurrences of rare events in time T
o \#soldiers kicked to death by horses

cdf: Univariate cumulative distribution function

cdf $\mathrm{F}_{\mathrm{X}}(\mathrm{x})=\mathrm{P}(\{\mathrm{X}: \mathrm{X} \leq \mathrm{x}\})$

Lebesgue-Stieltjes integral

$$
P(A)=\int_{-\infty}^{\infty} I_{A}(x) d F_{X}(x)
$$

Riemann integral

$$
P(A)=\int_{-\infty}^{\infty} I_{A}(x) f_{X}(x) d x=\int_{A} f(x) d x
$$

- $\quad 1 \geq \mathrm{F}(\mathrm{x}) \geq 0$
- $\mathrm{P}((\mathrm{a}, \mathrm{b}])=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$

1. nondecreasing: $\mathrm{x}_{2}>\mathrm{x}_{1} \Rightarrow \mathrm{~F}_{\mathrm{X}}\left(\mathrm{x}_{2}\right)>\mathrm{F}_{\mathrm{X}}\left(\mathrm{x}_{1}\right)$
2. Right Continuity: $\mathrm{F}\left(\mathrm{x}^{+}\right)=\mathrm{F}(\mathrm{x})$

- $P(X=a)=P([a, a])=F(a)-F(a)=$ jump height $@ X=a$
- If $\mathrm{F}(\mathrm{x})$ is continuous @ a, then $\mathrm{P}(\mathrm{X}=\mathrm{a})=0$

3. The left-hand limit: $\lim _{x \rightarrow-\infty} F(x)=0$
4. The right-hand limit: $\lim _{x \rightarrow \infty} F(x)=1$

- convex combination of cdfs $\sum_{i=1}^{n} \lambda_{i} F_{i}(x)$ is a cdf
- F_{X} is continuous on the left at point a if and only if $\mathrm{P}(\mathrm{X}=\mathrm{a})=0$.

3 types of cdfs

(1) \quad Discrete CDF: $\mathrm{F}_{\mathrm{d}}(\mathrm{x})=\sum_{i} p_{i} U\left(x-x_{i}\right)$

$$
\left\{\mathrm{p}_{\mathrm{i}}\right\} \rightarrow \mathrm{pmf}
$$

- $\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}}$
- piecewise constant

(2) Absolutely Continuous CDF: $\mathrm{F}_{\mathrm{ac}}(\mathrm{x})=\int^{x} f(z) d z$

$$
\mathrm{f}(\mathrm{z}) \rightarrow \mathrm{pdf}
$$

- $P(X=x)=0$

(3) \quad Singular $\operatorname{CDF~F}_{\mathrm{s}}(\mathrm{x})$

- the only discontinuities that a pdf can have are jump discontinuities
- pdf can have at most a countable number of jump discontinuities.

Decomposition:

Any F(x)
$=\lambda_{\mathrm{d}} \mathrm{F}_{\mathrm{d}}(\mathrm{x})+\lambda_{\mathrm{ac}} \mathrm{F}_{\mathrm{ac}}(\mathrm{x})\left\{+\lambda_{\mathrm{s}} \mathrm{F}_{\mathrm{s}}(\mathrm{x})\right\} \quad ; \sum \lambda=1$
$=\lambda \underbrace{\sum_{i} p_{i} U\left(x-x_{i}\right)}_{\text {step }}+(1-\lambda) \underbrace{\int_{-\infty}^{x} f(y) d y}_{\text {continuess }}$
$\frac{d}{d x} F(x)=\lambda \sum_{i} p_{i} \delta\left(x-x_{i}\right)+(1-\lambda) f(x)$

CDF representation for $\mathrm{pmf} \mathrm{p}(\omega)$
$\Omega=\left\{\omega_{i}\right\} \rightarrow \mathrm{F}(\mathrm{x})=\sum_{i: \omega_{i} \leq x} p\left(\omega_{i}\right)=\sum_{i} p\left(\omega_{i}\right) U\left(x-\omega_{i}\right)$
For a random experiment \mathcal{E}, can estimate the cdf from data on the actual outcomes $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ of n unlinked repetitions of \mathcal{E} through empirical distribution function $\hat{F}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} U\left(x-x_{i}\right)$
the number of observations lying in the interval $(\mathrm{a}, \mathrm{b}$]
$=$ the height of the histogram
$=n\left(\hat{F}_{n}(b)-\hat{F}_{n}(a)\right)$
$\mathrm{F}(\mathrm{z})=$ the value of the cdf F as z is approached from the left
(the lower cdf value if there is a jump discontinuity at z)

pdf: Probability Density Function

$x \in \mathfrak{R}$
pdf \Leftrightarrow
(1) $f(x) \geq 0$
(2) $\int f(x) d x=P(\Omega)=1$
Ω_{Ω}

- $\mathrm{f}(\mathrm{x})$ can > 1
- convex combination of pdfs $\sum \lambda_{i} f_{i}(x)$ yields a pdf

1:1 correspondence between P, cdf, pdf
$P(A)=\int_{A} f(x) d x=\int_{-\infty}^{\infty} I_{A}(x) f(x) d x$
$F_{X}(x)=P(\{X: X \leq x\})=\int_{-\infty}^{x} f_{X}(x) d x$
$f_{X}(x)=\frac{d}{d x} F_{X}(x)$

$$
\begin{aligned}
& \text { pmf } \mathrm{p} \text { is a special case of pdf } \mathrm{f} \\
& \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}}=\mathrm{P}\left(\left\{\omega=\mathrm{x}_{\mathrm{i}}\right\}\right) \\
& \mathrm{f}(\omega)=\sum p_{i} \delta\left(\omega-x_{i}\right)
\end{aligned}
$$

- Uniform Ua,b)

$$
\begin{aligned}
& f(x)=\frac{1}{b-a} U(x-a) U(b-x)= \begin{cases}0 & x<a, x>b \\
\frac{1}{b-a} & a \leq x \leq b\end{cases} \\
& F(x)= \begin{cases}0 & x<a, x>b \\
\frac{x-a}{b-a} & a \leq x \leq b\end{cases} \\
& \hline
\end{aligned}
$$

continuous generalization of $\mathrm{P}(\mathrm{n})$
o use with caution to represent ignorance about a parameter taking value in $[\mathrm{a}, \mathrm{b}]$
o phase of oscillators $\Rightarrow[-\pi, \pi]$ or $[0,2 \pi]$
o phase of received signals in incoherent communications \rightarrow usual broadcast carrier phase $\phi \sim U(\pi, \pi)$
o mobile cellular communication: multipath \rightarrow path phases $\phi_{c} \sim U(-\pi, \pi)$

- Exponential $\mathcal{E}(\alpha)$

$f(x)=\alpha e^{-\alpha x} U(x) ; \alpha>0$
$F(x)=\left(1-e^{-\alpha x}\right) U(x)= \begin{cases}0 & x<0 \\ 1-e^{-\alpha x} & x \geq 0\end{cases}$
$P(X>x)=e^{-\alpha x} U(x)$

continuous version of $G(\beta)$

- Lack of memory property

$$
\mathrm{P}\{\mathrm{X}>\mathrm{k}+\mathrm{c} \mid \mathrm{X}>\mathrm{k}\}=\frac{P\{X>k+c\}}{P\{X>k\}}=\mathrm{P}\{\mathrm{X}>\mathrm{c}\}
$$

o lifetimes (continuous time) of components of systems that fail without aging (memorylessness - eg wine glass) $:$ mean life $=\frac{1}{\alpha}$
o waiting times between successive photon arrivals

- electron emissions from a cathode
- radioactive decays
- customer/packet arrivals
- dopant atoms arrival in an implant process
o duration of telephone or wireless call
- Pareto $\operatorname{Par}(\alpha)$: heavy-tailed model/density
$f(x)=\alpha x^{-\alpha-1} U(x-1) ; \alpha>0$
$F(x)=\left(1-\frac{1}{x^{\alpha}}\right) U(x-1)= \begin{cases}0 & x<1 \\ 1-\frac{1}{x^{\alpha}} & x \geq 1\end{cases}$

o distribution of wealth
o flood heights of the Nile river
o designing dam height
o (discrete) sizes of files requested by web users
o waiting times between successive keystrokes at computer terminals
o (discrete) sizes of files stored on Unix system file servers
o running times for NP-hard problems as a function of certain parameters

- Laplacian $\mathcal{L}(\alpha)$

$$
\begin{aligned}
& f(x)=\frac{\alpha}{2} e^{-\alpha|x|} ; \alpha>0 \\
& F(x)= \begin{cases}\frac{1}{2} e^{\alpha x} & x<0 \\
1-\frac{1}{2} e^{-\alpha x} & x \geq 0\end{cases}
\end{aligned}
$$

o amplitudes of speech signals
o amplitudes of differences of intensities between adjacent pixels in an image

- Normal/Gaussian $\mathcal{N (m , \sigma ^ { 2 })}$
$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^{2}}$
$\mathrm{m} \rightarrow$ mean
$\sigma^{2} \rightarrow$ variance
$\sigma \rightarrow$ standard deviation ≥ 0
error function:

$$
\begin{aligned}
\operatorname{erf}(z) & =\Phi(z)=\int_{-\infty}^{2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
& =1-\bar{\Phi}(z)
\end{aligned}
$$

complementary error function:

$$
\begin{aligned}
& \operatorname{cerf}(z)=\bar{\Phi}(z)=1-\Phi(z)=\int_{z}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
&=\frac{1}{\sqrt{2 \pi}}\left(\frac{e^{-\frac{x^{2}}{2}}}{x}-\int_{x}^{\infty} \frac{e^{-\frac{x^{2}}{2}}}{x^{2}} d x\right) \\
& \approx \frac{e^{-\frac{x^{2}}{2}}}{x \sqrt{2 \pi}} \text { for large } \mathrm{x} \\
& \mathrm{~F}(\mathrm{x})=\Phi\left(\frac{x-m}{\sigma}\right)
\end{aligned}
$$

- thermal noise
- in resisters
- produced by all dissipative physical systems operating above 0 K
- Voltage across a resistor R [ohm] @ T [K] $\mathrm{V} \sim \mathrm{N}\left(0, \sigma^{2}\right) ; \sigma^{2}=4 \mathrm{kTRB}$

B : single-sided (only positive, physical frequencies) bandwidth [Hz]

$$
\mathrm{k}=\text { Boltzmann's constant }=1.38 \times 10^{-23}\left[\frac{\mathrm{Watt}}{\mathrm{~Hz} \cdot \mathrm{~K}}\right]
$$

- a device have a noise temperature of $\mathrm{TK} \rightarrow$ average power $\mathrm{P}=\mathrm{kTB}$ would be delivered to $\mathrm{R}_{\text {load }}$ under fictitious assumption that the source is also a resistance $\mathrm{R}_{\mathrm{s}}=\mathrm{R}_{\text {load }}$ @ T

3 K universal background radiation

- 290 K radiation from the Earth as seen from space
- shot noise produced by the random arrivals of individual photons or electrons
- low-frequency noise ($\frac{1}{f}$, flicker, semiconductor, excess noises) as found in
- low-frequency amplifiers
- variation in quartz crystal oscillator frequency
- many kinds of measurement errors
- variabilities in parameters of
- manufactured components
- biological organisms (height, weight, intelligence)
- certain characteristics oflarge-scale systems formed out of many loosely interacting components

Reliability assessment

components that do not degrade significantly due to aging

- due to manufacturing errors, they may fail on the first use with small probability λ
- if they do not fail immediately, lifetime $\mathrm{L} \sim \mathrm{E}(\alpha)$

$$
f_{L}(x)=\lambda \delta(x)+(1-\lambda) \alpha e^{-\alpha x} U(x)
$$

Rayleigh

$F(x)=\left(1-e^{-\alpha x^{2}}\right) U(x)$

$$
f(x)=2 \alpha x e^{-\alpha \alpha^{2}} U(x)
$$

$$
P(\{X>t\})=1-F(t)= \begin{cases}e^{-\alpha t^{2}} & t \geq 0 \\ 1 & t<0\end{cases}
$$

- noise X at the output of AM envelope detector when no signal is present
- If X and Y are independent, identically distributed normal random variables, then $\mathrm{R} \equiv \sqrt{X^{2}+Y^{2}}$ has a Rayleigh density

Cauchy

$\mathrm{f}(\mathrm{z})=\frac{a}{\pi} \frac{1}{a^{2}+z^{2}}$ where $\mathrm{a}>0$

- If X and Y are independent, identically distributed normal random variables, then $\mathrm{Z} \equiv \frac{Y}{X}$ has a Rayleigh density

Multivariate

uncountably infinite sample spaces
$\Omega \subset \mathfrak{R}^{n}$
orthant / semi-infinite corner with northeast vertex specified by the point \underline{x}
$\mathrm{C}_{\underline{x}}=\left\{\underline{\mathrm{X}}:(\forall \mathrm{i} \leq \mathrm{n}) \mathrm{X}_{\mathrm{i}} \leq \mathrm{x}_{\mathrm{i}}\right\}$

multivariate / joint cdf

$\mathrm{F}_{\underline{\mathrm{x}}}(\underline{\mathrm{x}})=\mathrm{P}\left(\mathrm{C}_{\underline{x}}\right)$
o_{x} non-decreasing in each variable:
$\underline{\mathrm{x}}_{\mathrm{a}}<\underline{\mathrm{x}}_{\mathrm{b}}$ component-wise $\rightarrow \mathrm{F}_{\underline{\mathrm{X}}}\left(\underline{\mathrm{X}}_{\mathrm{a}}\right)<\mathrm{F}_{\underline{\mathrm{X}}}\left(\underline{\mathrm{x}}_{\mathrm{b}}\right)$
o $\quad \lim _{x_{i} \rightarrow-\infty} F_{\underline{X}}(\underline{x})=0$
o $\lim _{x_{n} \rightarrow \infty} F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=F_{X_{1}, \ldots, X_{n-1}}\left(x_{1}, \ldots, x_{n-1}\right)$
o $\quad \lim _{x_{1}, \ldots, x_{n} \rightarrow \infty} F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=1$
o for $\mathrm{n}=2$
$\mathrm{P}\left(\mathrm{a}_{1}<\mathrm{X}_{1} \leq \mathrm{b}_{1}, \mathrm{a}_{2}<\mathrm{X}_{2} \leq \mathrm{b}_{2}\right)$
$=\mathrm{F}_{\mathrm{X}}\left(\mathrm{b}_{1}, \mathrm{~b}_{2}\right)-\mathrm{F}_{\mathrm{X}}\left(\mathrm{a}_{1}, \mathrm{~b}_{2}\right)-\mathrm{F}_{\mathrm{X}}\left(\mathrm{b}_{1}, \mathrm{a}_{2}\right)+\mathrm{F}_{\mathrm{X}}\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)$

multivariate / joint pdf

PDF1 $\mathrm{f}(\mathrm{x}) \geq 0 ; \forall \mathrm{x} \in \mathfrak{R}^{\mathrm{n}}$
PDF2
$\int_{\Re^{n}} f_{\underline{X}}(\underline{x}) d \underline{x}=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_{\underline{X}}(\underline{x}) d x_{1} \ldots d x_{n}=1$
$\mathrm{F}_{\underline{\mathrm{x}}}(\underline{\mathrm{x}})=\mathrm{P}\left(\mathrm{C}_{\underline{\underline{x}}}\right)=\int_{\Re^{n}} f_{\underline{X}}(\underline{x}) d \underline{x}=\int_{-\infty}^{x_{1}} \ldots \int_{-\infty}^{x_{n}} f_{\underline{X}}(\underline{x}) d x_{1} \ldots d x_{n}$
$\mathrm{P}(\mathrm{A})=\int_{A} f_{\underline{X}}(\underline{x}) d \underline{x}=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_{\underline{X}}(\underline{x}) I_{A}(\underline{x}) d \underline{x}$
$\mathrm{f}_{\underline{\mathrm{X}}}(\underline{\mathrm{x}})=\frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}} F_{\underline{X}}(\underline{x})$
$f_{X_{1}, \ldots, X_{n-1}}\left(x_{1}, \ldots, x_{n-1}\right)=\int^{\infty} f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) d x_{n}$
product or independence construction
when have unlinked or unrelated $\left\{\mathrm{E}_{\mathrm{i}}\right\}$,
X_{i} : outcome of E_{i} (univariate)
$\mathrm{f}_{\underline{\mathrm{X}}}(\underline{\mathrm{x}})=\prod_{1}^{n} f_{i}\left(x_{i}\right), \mathrm{F}_{\underline{\mathrm{x}}}(\underline{\mathrm{x}})=\prod_{1}^{n} F_{i}\left(x_{i}\right)$

- $F_{X_{a}^{b}}\left(x_{a}^{b}\right)=F_{X_{a}, X_{a+1}, \ldots, X_{b}}\left(x_{a}, x_{a+1}, \ldots, x_{b}\right) ; \mathrm{b} \geq \mathrm{a}$
- $F_{X_{a}^{a}}\left(x_{a}^{a}\right)=F_{X_{a}}\left(x_{a}\right)$

Functions of Random Variables
Random variable

- a real-valued X that somewhat unpredictably takes on a specific numerical value x when the appropriate random experiment is performed.
- vector-valued random quantities: \underline{X}
- a function, mapping, or transformation from a given initial probability space $\Omega, \mathcal{A}, \mathrm{P}$ to a final probability space $\Omega_{\mathrm{X}}, \mathcal{B}, \mathrm{P}_{\mathrm{X}}$ $\mathrm{X}: \Omega \rightarrow \Omega_{\mathrm{X}}, \mathrm{X}(\omega) \in \Omega_{\mathrm{X}}$

Measurability

The function X is measurable wrt. the algebras $\mathcal{A}, \mathcal{B} \Leftrightarrow$
$(\forall \mathrm{B} \in \mathcal{B}) \mathrm{X}^{-1}(\mathrm{~B}) \in \mathcal{A}$
Random variables are assumed to be measurable wrt. the relevant σ algebras
an initial probability space $\Omega, \mathcal{A}, \mathrm{P}$
and
a final probability space $\Omega_{\mathrm{x}}, \mathcal{B}, \mathrm{P}_{\mathrm{X}}$
are linked by a random variable X
whenever

$$
\mathrm{X}: \Omega \rightarrow \Omega_{\mathrm{X}}
$$

is measurable wrt. the algebras $\mathbf{A B}$ and
$\left(\forall \mathrm{B} \in \mathbf{B} \mathrm{P}_{\mathrm{X}}(\mathrm{B})=\mathrm{P}\left(\mathrm{X}^{-1}(\mathrm{~B})\right)\right.$

$\mathbf{Y}=\mathbf{g}(\mathbf{X})$

- $\mathcal{E}_{\mathrm{X}}=\left(\Omega_{\mathrm{X}}, \mathcal{A}_{\mathrm{X}}, \mathrm{P}_{\mathrm{X}}\right)$
$\mathcal{E}_{\mathrm{Y}}=\left(\Omega_{\mathrm{Y}}, \mathcal{A}_{\mathrm{Y}}, \mathrm{P}_{\mathrm{Y}}\right)$
- $\Omega_{\underline{X}} \xrightarrow{g} \Omega_{\underline{Y}}=\left\{\mathrm{Y}:\left(\exists \mathrm{X} \in \Omega_{\mathrm{X}}\right) \mathrm{Y}=\mathrm{g}(\mathrm{X})\right\}$
- $\Omega_{\mathrm{Y}} \supset \mathrm{g}\left(\Omega_{\mathrm{X}}\right)$
- for $\mathrm{A}_{\mathrm{Y}} \in \Omega_{\mathrm{Y}}$, if $\mathrm{g}^{-1}\left(\mathrm{~A}_{\mathrm{Y}}\right)=\varnothing$, then $\mathrm{P}_{\mathrm{Y}}\left(\mathrm{A}_{\mathrm{Y}}\right)=0$
- g is measurable wrt. the algebras $\mathcal{A}_{\mathrm{X}}, \mathcal{A}_{\mathrm{Y}} \Leftrightarrow$ $\left(\forall \mathrm{A}_{\mathrm{Y}} \in \mathcal{A}_{\mathrm{Y}}\right) \mathrm{g}^{-1}\left(\mathrm{~A}_{\mathrm{Y}}\right) \in \mathcal{A}_{\mathrm{X}}$
Given P_{X}, g, need P_{Y}
- $\quad \mathrm{P}_{\mathrm{Y}}\left(\mathrm{A}_{\mathrm{Y}}\right)=\mathrm{P}_{\mathrm{X}}\left(\mathrm{g}^{-1}(\mathrm{~A})\right)=\int_{\left\{x: x \in g^{-1}\left(A_{Y}\right)\right\}} f_{X}(x) d x=\int_{g^{-1}\left(A_{Y}\right)} f_{X}(x) d x$

To determine $\mathbf{f}_{\underline{Y}}$ from $\mathbf{f}_{\underline{\mathbf{x}}}$

- $\mathrm{F}_{\mathrm{Y}}(\mathrm{y})=\mathrm{P}_{\mathrm{Y}}(\mathrm{Y} \leq \mathrm{y})=\mathrm{P}_{\mathrm{X}}(\mathrm{g}(\mathrm{X}) \leq \mathrm{y})=\int_{\{x: g(x) \leq y\}} f_{\mathrm{X}}(x) d x$
- $\quad f_{Y}(y)=\frac{d}{d y} F_{Y}(y)$

SISO

Linear: $\mathbf{Y}=\mathbf{a X}+\mathbf{b}$
continuous F_{X} (for a < 0 part)
$f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)$

- $X \sim N\left(m, \sigma^{2}\right), Y=a X+b \rightarrow Y \sim N\left(a m+b, a^{2} \sigma^{2}\right)$

Power Law $\mathbf{Y}=\mathbf{X}^{\mathbf{n}}$

- n odd: $f_{Y}(y)=\frac{1}{n} y^{\frac{1}{n}-1} f_{X}\left(y^{\frac{1}{n}}\right)$
- n even $\&$ continuous F_{X} :

$$
f_{Y}(y)=\frac{1}{n} y^{\frac{1}{n}-1}\left[f_{X}\left(y^{\frac{1}{n}}\right)+f_{X}\left(-y^{\frac{1}{n}}\right)\right] U(y)
$$

$\mathrm{g}^{-1}(\mathrm{y})=\min \{\mathrm{x}: \mathrm{g}(\mathrm{x}) \geq \mathrm{y}\}$

Monotone \mathbf{g} (strictly increasing or strictly decreasing; one-to-on single variable transformation)

$$
f_{Y}(y)=\left|\frac{d}{d y} g^{-1}(y)\right| f_{X}\left(g^{-1}(y)\right)
$$

- $\mathrm{F}_{\mathrm{Y}}(\mathrm{y})=\mathrm{P}(\mathrm{Y} \leq \mathrm{y})$
- For monotone-increasing function,

$$
\mathrm{F}_{\mathrm{Y}}(\mathrm{y})=P\left(X \leq g^{-1}(y)\right)=\mathrm{F}_{\mathrm{X}}\left(\mathrm{~g}^{-1}(\mathrm{y})\right)
$$

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) \underbrace{\left(\frac{d}{d y} g^{-1}(y)\right)}_{>0}
$$

- For monotone-decreasing function,

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Y}}(\mathrm{y})=P\left(X \geq g^{-1}(y)\right) \\
& =1-P\left(X \leq g^{-1}(y)\right)+P\left(X=g^{-1}(y)\right)=1-\mathrm{F}_{\mathrm{X}}\left(\mathrm{~g}^{-1}(\mathrm{y})\right) \\
& f_{Y}(y)=-f_{X}\left(g^{-1}(y)\right) \underbrace{\left.\frac{d}{d y} g^{-1}(y)\right)}
\end{aligned}
$$

Ex. $\mathrm{Y}=\mathrm{X}^{2} \mathrm{U}(\mathrm{x})$
note that $\mathrm{Y} \geq 0$; so $\mathrm{f}_{\mathrm{Y}}(\mathrm{y})=\mathrm{F}_{\mathrm{Y}}(\mathrm{y})=0$ for $\mathrm{y}<0$
$\mathrm{F}_{\mathrm{Y}}(\mathrm{y})=\mathrm{P}(\mathrm{Y} \leq \mathrm{y})=\mathrm{P}\left(\mathrm{X}^{2} \mathrm{U}(\mathrm{X}) \leq \mathrm{y}\right)$
note that $\mathrm{X}^{2} \mathrm{U}(\mathrm{X}) \geq 0$
$\mathrm{F}_{\mathrm{Y}}(\mathrm{y})=\mathrm{P}(\mathrm{Y} \leq \mathrm{y})=\mathrm{P}\left(0 \leq \mathrm{X}^{2} \mathrm{U}(\mathrm{X}) \leq \mathrm{y}\right)$
$F_{Y}(0)=P\left(0 \leq X^{2} U(X) \leq 0\right)=P\left(X^{2} U(X)=0\right)=P(X=0)+P(U(X)=0)$
$=0+P(X<0)=F_{X}(0)$
For $\mathrm{y}>0, \mathrm{~F}_{\mathrm{Y}}(\mathrm{y})=\mathrm{P}\left(0 \leq \mathrm{X}^{2} \mathrm{U}(\mathrm{X}) \leq \mathrm{y}\right)=\mathrm{P}(\mathrm{X}<0)+\mathrm{P}(0 \leq \mathrm{X} \leq \sqrt{y})$

$$
=\mathrm{P}(\mathrm{X} \leq \sqrt{y})=\mathrm{F}_{\mathrm{X}}(\sqrt{y})
$$

$\mathrm{F}_{\mathrm{Y}}(\mathrm{y})= \begin{cases}0 & y<0 \\ F_{X}(0) & y=0 \\ F_{X}(\sqrt{y}) & y>0\end{cases}$
$\mathrm{f}_{\mathrm{Y}}(\mathrm{y})=\left\{\begin{array}{ll}0 & y<0 \\ \frac{1}{2 \sqrt{y}} f_{X}(\sqrt{y}) & y>0\end{array}\right\}+F_{X}(0) \delta(y)$
To generate $\mathrm{Y} \sim \mathrm{F}_{\mathrm{Y}}(\mathrm{y})=\mathrm{G}(\mathrm{y})$ from $\mathrm{U} \sim \mathcal{U}(0,1)$
Inverse cdf
The inverse G^{-1} to a cdf G is
$G^{-1}(u)=\min \{y: G(y) \geq u\}$

- Both G and G^{-1} are nondecreasing functions
- $\quad \mathrm{G}\left(\mathrm{G}^{-1}(\mathrm{u})\right) \geq \mathrm{u}$
- $\quad \mathrm{G}^{-1}(\mathrm{G}(\mathrm{y})) \leq \mathrm{y}$
- ? G^{-1} of confusing u is @ jump

- $G\left(y_{2}\right)=u_{3}$
- $\mathrm{G}^{-1}\left(\mathrm{u}_{3}\right)=\min \left\{\mathrm{y}: \mathrm{G}(\mathrm{y}) \geq \mathrm{u}_{3}\right\}=\mathrm{y}_{2}$
- $G^{-1}\left(u_{1}<u_{2}<u_{3}\right)=\min \left\{y: G(y) \geq u_{2}\right\}=y_{2}$
$G(y)$ jump from $u_{1}{ }^{-}$to u_{3} at $y_{2} \operatorname{so}, \min G(y) \geq u_{2}$ is u_{3} $G(y)=u_{3} \rightarrow y=y_{2}$
- $\mathrm{G}^{-1}\left(\mathrm{u}_{1}\right)=\min \left\{\mathrm{y}: \mathrm{G}(\mathrm{y}) \geq \mathrm{u}_{1}\right\}=\mathrm{y}_{2}$
no $G(y)=u_{1}$
$G(y)$ jump from $u_{1}{ }^{-}$to u_{3} at $y_{2} \operatorname{so}, \min G(y) \geq u_{1}$ is u_{3}
- $\mathrm{G}^{-1}\left(\mathrm{u}_{6}\right)=\mathrm{y}_{4}$
- $\mathrm{G}^{-1}\left(\mathrm{u}_{5}\right)=\min \left\{\mathrm{y}: \mathrm{G}(\mathrm{y}) \geq \mathrm{u}_{5}\right\}=\left\{\mathrm{y}: \mathrm{G}(\mathrm{y})=\mathrm{u}_{6}\right\}=\mathrm{y}_{4}$
- $\mathrm{G}^{-1}\left(\mathrm{u}_{4}\right)=\min \left\{\mathrm{y}: \mathrm{G}(\mathrm{y}) \geq \mathrm{u}_{4}\right\}=\min \left\{\mathrm{y}: \mathrm{G}(\mathrm{y})=\mathrm{u}_{4}\right\}=\mathrm{y}_{3}$

- Note the difference between choosing the value at u_{1} and u_{4} incoming increasing \Rightarrow choose y at jump
incoming constant \Rightarrow choose y at left end of constant problem if have constant piece $\mathrm{G}((-\infty, \mathrm{a}))=0$ ans.: $\mathrm{G}^{-1}(0)=0$
$\mathbf{U} \sim \mathcal{U}(\mathbf{0}, \mathbf{1}) \rightarrow \mathbf{Y}=\mathbf{G}^{-1}(\mathbf{U}) \sim \mathbf{c d f} \mathbf{G}$
strictly increasing continuous cdf F
- F^{-1} is continuous and strictly increasing
$\mathrm{Y} \sim \mathrm{F} \rightarrow \mathrm{X}=\mathrm{F}(\mathrm{Y}) \sim \mathbf{4} 0,1)$
: probability integral transformation
MIMO: Multiple Input - Multiple Output
$\operatorname{dim}(\mathrm{X})=\operatorname{dim}(\mathrm{Y}) \Rightarrow \mathrm{n}=\mathrm{m}$
For a 1:1 nonlinear transfrmation g from \underline{X} to $\underline{Y}, \underline{Y}=g(\underline{X})$,
with differentiable inverse $\mathrm{g}^{-1}, \underline{\mathrm{X}}=\mathrm{g}^{-1}(\underline{\mathrm{Y}})$
$\mathrm{f}_{\underline{\underline{Y}}}(\underline{y})=\mathrm{f}_{\underline{\underline{x}}}\left(\mathrm{~g}^{-1}(\mathrm{y})\right)|\operatorname{det} \mathrm{J}|$
$\mathrm{J}=\left[\mathrm{J}_{\mathrm{i}, \mathrm{j}}\right], \mathrm{J}_{\mathrm{i}, \mathrm{j}}=\frac{\partial x_{i}}{\partial y_{j}}=\frac{\partial}{\partial y_{j}} g_{i}^{-1}(\underline{y})$
$\operatorname{det} J=\left|\begin{array}{ccc}\frac{\partial}{\partial y_{1}} g_{1}^{-1}\left(y_{1}, \ldots y_{n}\right) & \cdots & \frac{\partial}{\partial y_{n}} g_{1}^{-1}\left(y_{1}, \ldots y_{n}\right) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial y_{1}} g_{n}^{-1}\left(y_{1}, \ldots y_{n}\right) & \vdots & \frac{\partial}{\partial y_{n}} g_{n}^{-1}\left(y_{1}, \ldots y_{n}\right)\end{array}\right|$

$$
=\frac{\left|\begin{array}{ccc}
\frac{\partial}{\partial x_{1}} g_{1}\left(x_{1}, \ldots x_{n}\right) & \cdots & \frac{\partial}{\partial x_{n}} g_{1}\left(x_{1}, \ldots x_{n}\right) \\
\vdots & \ddots & \vdots \\
\frac{\partial}{\partial x_{1}} g_{n}\left(x_{1}, \ldots x_{n}\right) & \vdots & \frac{\partial}{\partial x_{n}} g_{n}\left(x_{1}, \ldots x_{n}\right)
\end{array}\right|}{\text { l }}
$$

Ex $\quad \underline{Y}=\mathrm{A} \underline{X}+\underline{b}$
$f_{\underline{Y}}(\underset{y}{ })=f_{\underline{X}}\left(A^{-1} \underline{y}-A^{-1} \underline{b}\right) \cdot \frac{1}{|A|}$
Ex Transformation from Cartesian coordinates (x, y) to polar coordinates $(\mathrm{r}, \theta)\binom{x}{y} \rightarrow\binom{r}{\theta}$
$x=r \cos \theta, y=r \sin \theta, r=\sqrt{x^{2}+y^{2}}, \theta=\tan ^{-1}\left(\frac{y}{x}\right)$
$|J|=\left|\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right|=\left|\begin{array}{cc}\cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta\end{array}\right|=r: \mathrm{dx} \mathrm{dy}=\mathrm{rdrd} \theta$
$\mathrm{f}_{\mathrm{R}, \Theta}(\mathrm{r}, \theta)=\mathrm{f}_{\mathrm{X}, \mathrm{Y}}(\mathrm{x}=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta) \mathrm{r}$

Special case:

Transforming Uniforms into Normals
$\binom{X_{1}}{X_{2}} \sim \mathcal{U}(0,1)$
$\left.\binom{Y_{1}}{Y_{2}}=\binom{\sqrt{-2 \sigma^{2} \log x_{1}} \cos \left(2 \pi x_{2}\right)}{\sqrt{-2 \sigma^{2} \log x_{1}} \sin \left(2 \pi x_{2}\right)} \sim \mathbf{N} 0, \sigma^{2}\right)$
For \underline{X} be i.i.d. pdf type C
means $\mathrm{f}_{\underline{\mathrm{X}}}(\underline{\mathrm{x}})=f_{X_{1}}\left(x_{1}\right) \cdot f_{X_{2}}\left(x_{2}\right) \cdots f_{X_{n}}\left(x_{n}\right), \mathrm{X}_{\mathrm{i}} \sim \mathrm{C}$
MIMO transformation: $\operatorname{dim}(\mathrm{Y})=\mathrm{m}<\mathrm{n}=\operatorname{dim}(\underline{\mathrm{X}})$
solution: augment \underline{Y} to $\underline{Y}^{\prime}, \operatorname{dim}\left(\underline{Y}^{\prime}\right)=\operatorname{dim}(\underline{X})$
(addition of $\mathrm{n}-\mathrm{m}$ variablesto $\underline{\mathrm{Y}}$ so that the new overall
transformation has a unique differentiable inverse)
Sums of random variables
$\mathrm{Z}=\mathrm{X}+\mathrm{Y}$
$\mathrm{P}(\mathrm{Z} \leq \mathrm{z})=\mathrm{P}(\mathrm{X}+\mathrm{Y} \leq \mathrm{z})$

$\mathrm{F}_{\mathrm{Z}}(\mathrm{z})=\int_{-\infty}^{\infty} \int_{-\infty}^{z-x^{\prime}} f_{X, Y}\left(x^{\prime}, y^{\prime}\right) d y^{\prime} d x^{\prime}$
$\mathrm{f}_{\mathrm{Z}}(\mathrm{z})=\frac{d}{d z} F_{Z}(z)=\int_{-\infty}^{\infty} f_{X, Y}\left(x^{\prime}, z-x^{\prime}\right) d x^{\prime} \Rightarrow$ superposition integral

If X and Y are independent random variables,
then
$\mathrm{f}_{\mathrm{Z}}(\mathrm{z})=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x \Rightarrow$ convolution integral

Product of random variable

If random variable X and Y are statistically independent and if their $\mathrm{pdf} \mathrm{f}_{\mathrm{X}}$ and f_{Y} respectively, exist almost everywhere, the the
probability density of their product
$\mathrm{Z}=\mathrm{XY}$
is given by the formula
$\mathrm{f}_{\mathrm{Z}}(\mathrm{z})=\int_{-\infty}^{\infty} \frac{1}{|x|} f_{X}(x) f_{Y}\left(\frac{z}{x}\right) d x$

Expectation and Moments

Expectation
$\mathrm{EX}=\int_{-\infty}^{0} x f_{X}(x) d x+\int_{0}^{\infty} x f_{X}(x) d x$
provided that at least one of the two integrals is finite
(can't have $(-\infty)+(+\infty)$)
For discrete-valued X
$\mathrm{EX}=\sum_{i x_{i} \leq 0} x_{i} P\left(X=x_{i}\right)+\sum_{i x_{i}>0} x_{i} P\left(X=x_{i}\right)$
provided that at least one of these sums is finite

- $\mathrm{P}(\mathrm{X}=\mathrm{c})=1 \rightarrow \mathrm{EX}=\mathrm{E}(\mathrm{c})=\mathrm{c}$
- $\mathrm{P}(\mathrm{X} \geq 0)=1 \rightarrow \mathrm{EX} \geq 0$
- $\mathrm{E}(\mathrm{aX})=\mathrm{aEX}$
- $\mathrm{E}(\mathrm{X}+\mathrm{Y})=\mathrm{EX}+\mathrm{EY}$
$E\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} E X_{i}$
- $E(a X+b Y+c)=a E X+b E Y+c$; for finite $E X, E Y$
- $\mathrm{P}(\mathrm{X} \geq \mathrm{Y})=1 \rightarrow \mathrm{EX} \geq \mathrm{EY}$
- $\mathrm{EX}=-\int_{-\infty}^{0} F_{X}(x) d x+\int_{0}^{\infty}\left(1-F_{X}(x)\right) d x$ * if $\lim _{x \rightarrow-\infty} x F(x) d x=\lim _{x \rightarrow \infty} x(1-F(x)) d x=0$
- $\quad \mathrm{E}(\mathrm{g}(\mathrm{X}))=\int^{\infty} g(x) f_{X}(x) d x^{*}$ Ex. $\quad g(x)=U(t-x)$

$$
\mathrm{E}(\mathrm{~g}(\mathrm{X}))=\int^{\infty} U(t-x) f_{X}(x) d x=\int^{t} f_{X}(x) d x=\mathrm{F}_{\mathrm{X}}(\mathrm{t})
$$

- $E\left(\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right)=E\left(\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i} X_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} E\left(X_{i} X_{j}\right)$
$\mathrm{n}^{\text {th }}$ Moment: $\mathrm{E}\left(\mathrm{X}^{\mathrm{n}}\right)=\int_{-\infty}^{\infty} x^{n} f_{X}(x) d x$; if exists
- Finiteness of Moments: $\mathrm{j}<\mathrm{k} \rightarrow\left\{\left|\mathrm{E}\left(\mathrm{X}^{\mathrm{k}}\right)\right|<\infty \rightarrow\left|\mathrm{E}\left(\mathrm{X}^{\mathrm{j}}\right)\right|<\infty\right\}$
\circ the existence of finite higher-order moments implies the existence of finite lower-order moments
$\mathrm{n}^{\text {th }}$ Central Moment: $E\left((X-E X)^{n}\right)=\int^{\infty}(x-E X)^{n} f_{X}(x) d x$; if exists
- $\mathrm{n}=1: \mathrm{E}(\mathrm{X}-\mathrm{EX})=0$
- $\quad E\left(X^{n}\right)=\sum_{k=0}^{n}\binom{n}{k}(E X)^{n-k} E\left((X-E X)^{k}\right)$
- the $\mathrm{k}^{\text {th }}$ moment exists \leftrightarrow the $\mathrm{k}^{\text {th }}$ central moment exists finite

Variance: VAR(X)
$=\sigma_{X}{ }^{2}$
$=$ second central moment $=E\left((X-E X)^{2}\right)=\int_{-\infty}^{\infty}(x-E X)^{2} f_{X}(x) d x$
$=\mathrm{E}\left(\mathrm{X}^{2}\right)-(\mathrm{EX})^{2}$

- $\operatorname{VAR}(\mathrm{X}) \geq 0$
- $\operatorname{VAR}(\mathrm{c})=0$
- $\operatorname{VAR}(\mathrm{X}+\mathrm{c})=\operatorname{VAR}(\mathrm{X})$
- $\operatorname{VAR}(a X)=a^{2} \operatorname{VAR}(X)$
- $0 \leq \operatorname{VAR}(X) \leq \mathrm{E}\left(\mathrm{X}^{2}\right)$
- $\mathrm{EX}=0 \rightarrow$
- $\operatorname{VAR}(\mathrm{X})=E\left(\mathrm{X}^{2}\right)$
- $\operatorname{VAR}(\mathrm{X}+\mathrm{Y})=\operatorname{VAR}(\mathrm{X})+\operatorname{VAR}(\mathrm{Y})+2 \operatorname{COV}(\mathrm{X}, \mathrm{Y})$
standard deviation $=+\sqrt{\operatorname{VAR}(X)}$
Correlation: $\mathrm{E}(\mathrm{XY})=\int^{\infty} \int^{\infty} x y f_{X, Y}(x, y) d x d y$

Covariance:

$\operatorname{COV}(\mathrm{X}, \mathrm{Y})=\mathrm{E}(\mathrm{X}-\mathrm{EX})(\mathrm{Y}-\mathrm{EY})=\mathrm{E}(\mathrm{XY})-(\mathrm{EX})(\mathrm{EY})$

- $\operatorname{COV}(\mathrm{X}, \mathrm{Y})=\operatorname{COV}(\mathrm{Y}, \mathrm{X})$
- $\operatorname{COV}(\mathrm{X}+\mathrm{c}, \mathrm{Y}+\mathrm{c})=\operatorname{COV}(\mathrm{X}, \mathrm{Y})$
- $\operatorname{COV}(\mathrm{aX}, \mathrm{bY})=\operatorname{abCOV}(\mathrm{X}, \mathrm{Y})$
- $\operatorname{COV}(\mathrm{aX}+\mathrm{b}, \mathrm{cY}+\mathrm{d})=\operatorname{acCOV}(\mathrm{X}, \mathrm{Y})$
- $\{\mathrm{E}(\mathrm{XY})=(\mathrm{EX})(\mathrm{EY}) \leftrightarrow \mathrm{COV}(\mathrm{X}, \mathrm{Y})=0\} \rightarrow \mathrm{X}, \mathrm{Y}$ are uncorrelated
- $\mathrm{E}(\mathrm{XY})=0 \rightarrow \mathrm{X}, \mathrm{Y}$ are orthogonal
- $\mathrm{EX}=0$ or $\mathrm{EY}=0$
$\rightarrow \mathrm{COV}(\mathrm{X}, \mathrm{Y})=\mathrm{E}(\mathrm{XY})$
\rightarrow orthogonality is equivalent to uncorrelatedness
- $\operatorname{VAR}\left(\sum_{1}^{n} X_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$
- there can be a high degree of nonlinear dependence that is not seen by the covariance
autocorrelation / normalized covariance:
$\rho_{\mathrm{X}, \mathrm{Y}}=\frac{\operatorname{COV}(X, Y)}{\sqrt{\operatorname{VAR}(X) \cdot \operatorname{VAR}(Y)}}=\frac{\operatorname{COV}(X, Y)}{\sigma_{X} \sigma_{Y}}$
- $0 \leq \rho_{X, Y} \leq 1$
- large $\rho_{X, Y} \rightarrow$
high degree of linear dependence between X and Y

Estimator

- Observe X
- Inference: make a linear approximation $\hat{Y}(X)=a X+b$ to Y
- mean squared error $=\mathrm{E}(\mathrm{Y}-\hat{\mathrm{Y}})^{2}=\mathrm{E}(\mathrm{Y}-\mathrm{aX}-\mathrm{b})^{2}$

$$
\begin{aligned}
& \mathrm{E}(\mathrm{Y}-\mathrm{aX}-\mathrm{b})^{2} \\
& =\mathrm{E}((\mathrm{Y}-\mathrm{EY})-\mathrm{a}(\mathrm{X}-\mathrm{EX})+(-\underbrace{\mathrm{b}+\mathrm{EY}-\mathrm{aEX}}_{c}))^{2} \\
& =\mathrm{E}\left((\mathrm{Y}-\mathrm{EY})^{2}+\mathrm{a}^{2}(\mathrm{X}-\mathrm{EX})^{2}+\mathrm{c}^{2}\right. \\
& \quad-2 \mathrm{a}(\mathrm{Y}-\mathrm{EY})(\mathrm{X}-\mathrm{EX})+2 \mathrm{c}(\mathrm{Y}-\mathrm{EY})-\mathrm{ac}(X-E X)) \\
& =\operatorname{VAR}(\mathrm{Y})+\mathrm{a}^{2} \operatorname{VAR}(X)+\mathrm{c}^{2}-2 \mathrm{aCOV}(X, Y)
\end{aligned}
$$

- select a, c that yield a MMSE (minimum mean squared error)

```
choose \(\mathrm{c}=0 \Rightarrow \mathrm{~b}=\mathrm{EY}-\mathrm{a} \mathrm{EX}\)
\(\therefore \hat{Y}(X)=a X+E Y-a E X=a(X-E X)+E Y\)
```

or can use
$\frac{d}{d b} E(Y-\hat{Y})^{2}=E \frac{d}{d b}(Y-\hat{Y})^{2}=E(-2(Y-\hat{Y}) \underbrace{\left(\frac{d \hat{Y}}{d b}\right)}_{1})=0$

- $\mathrm{E} \hat{Y}=\mathrm{E} Y, \mathrm{~b}=\mathrm{E} Y-\mathrm{a} \mathrm{EX}$
now we have $\hat{Y}(X)=a(X-E X)+E Y$
$\mathrm{Y}-\hat{Y}(\mathrm{X})=(\mathrm{Y}-\mathrm{EY})-\mathrm{a}(\mathrm{X}-E X)$
$\mathrm{E}(\mathrm{Y}-\mathrm{aX}-\mathrm{b})^{2}=\operatorname{VAR}(\mathrm{Y})+\mathrm{a}^{2} \operatorname{VAR}(\mathrm{X})-2 \mathrm{aCOV}(\mathrm{X}, \mathrm{Y})$
$\frac{d}{d a} E(Y-\hat{Y})^{2}=0+2 a \operatorname{VAR}(X)-2 \operatorname{COV}(X, Y)$
To minimize $\mathrm{E}(\mathrm{Y}-\hat{\mathrm{Y}})^{2}$, need $\mathrm{a}=\frac{\operatorname{COV}(X, Y)}{\operatorname{VAR}(X)}$

$$
\frac{d}{d a} E(Y-\hat{Y})^{2}=2 E(Y-\hat{Y}) \frac{d \hat{Y}}{d a}=2 E(Y-\hat{Y})(X-E X)
$$

$E(Y-\hat{Y})(X-E X)=0$: orthogonality condition
$E(Y-\hat{Y})(X-E X)=E((Y-E Y)-a(X-E X))(X-E X)$

$$
=\operatorname{COV}(Y, X)-a \operatorname{VAR}(X)=0
$$

$\mathrm{E}(\mathrm{Y}-\mathrm{aX}-\mathrm{b})^{2}=\mathrm{E}((\mathrm{Y}-\mathrm{EY})-\mathrm{a}(\mathrm{X}-\mathrm{EX}))^{2}$
$\left(=\operatorname{VAR}(\mathrm{Y})+\mathrm{a}^{2} \operatorname{VAR}(\mathrm{X})-2 \mathrm{aCOV}(\mathrm{X}, \mathrm{Y})\right)$

- $\hat{Y}(X)=\frac{\operatorname{COV}(X, Y)}{\operatorname{VAR}(X)}(X-E X)+E Y$ *

$$
\begin{aligned}
& \mathrm{E}(\mathrm{Y}-\mathrm{aX}-\mathrm{b})^{2} \\
= & \operatorname{VAR}(Y)+\left(\frac{\operatorname{COV}(X, Y)}{\operatorname{VAR}(X)}\right)^{2} \operatorname{VAR}(X) \\
& -2\left(\frac{\operatorname{COV}(X, Y)}{\operatorname{VAR}(X)}\right) \operatorname{COV}(X, Y) \\
= & \operatorname{VAR}(Y)-\frac{(\operatorname{COV}(X, Y))^{2}}{\operatorname{VAR}(X)} \\
= & \operatorname{VAR}(Y) \cdot\left(1-\frac{(\operatorname{COV}(X, Y))^{2}}{\operatorname{VAR}(Y) \cdot \operatorname{VAR}(X)}\right) \\
= & \operatorname{VAR}(Y) \cdot\left(1-\rho_{X, Y}^{2}\right)
\end{aligned}
$$

- performance $=\mathrm{E}(\mathrm{Y}-\hat{\mathrm{Y}})^{2}=\operatorname{VAR}(\mathrm{Y})\left(1-\rho_{\mathrm{X}, \mathrm{Y}}{ }^{2}\right)$
worse case
if $\rho_{\mathrm{X}, \mathrm{Y}}=0 \leftrightarrow \operatorname{COV}(\mathrm{X}, \mathrm{Y})=0 \leftrightarrow \mathrm{X}$ and Y are uncorrelated, then
- have biggest mean squared error
- $\hat{Y}(X)=E Y($ not using $X)$
- performance $=\operatorname{VAR}(\mathrm{Y})$

Ex \quad Observe $\mathrm{X}=\mathrm{Y}+\mathrm{N}=$ noisy reading on Y
Infer Y using $\hat{Y}(X)=a X+b$
Assume EN $=0, \operatorname{COV}(\mathrm{~N}, \mathrm{Y})=0$ (uncorrelated)
$\mathrm{EN}=0 \rightarrow \mathrm{EX}=\mathrm{E}(\mathrm{Y}+\mathrm{N})=\mathrm{EY}+\mathrm{EN}=\mathrm{EY}+0=\mathrm{EY}$

```
    b: \(E \hat{Y}=E Y\)
        \(\mathrm{E}(\mathrm{aX}+\mathrm{b})=\mathrm{aEX}+\mathrm{b}=\mathrm{aEY}+\mathrm{b}=\mathrm{EY}\)
        \(b=E Y(1-a)\)
    \(\operatorname{COV}(\mathrm{X}, \mathrm{Y})\)
```

 \(=E(X-E X)(Y-E Y)=E(Y+N-E Y)(Y-E Y)\)
 \(=\mathrm{E}(\mathrm{Y}-\mathrm{EY})^{2}-\mathrm{E}(\mathrm{N})(\mathrm{Y}-\mathrm{EY})\)
 \(=\operatorname{VAR}(\mathrm{Y})-\mathrm{E}(\mathrm{N}-\mathrm{EN})(\mathrm{Y}-\mathrm{EY}) ; \mathrm{EN}=0\)
 \(=\operatorname{VAR}(\mathrm{Y})-\operatorname{COV}(\mathrm{N}, \mathrm{Y})=\operatorname{VAR}(\mathrm{Y})\)
 VAR(X)
$=\mathrm{E}(\mathrm{X}-\mathrm{EX})^{2}=\mathrm{E}(\mathrm{Y}+\mathrm{N}-\mathrm{EY})^{2}$
$=\mathrm{E}(\mathrm{Y}-\mathrm{EY})^{2}+\mathrm{E}\left(\mathrm{N}^{2}\right)+2 \mathrm{E}(\mathrm{N})(\mathrm{Y}-\mathrm{EY})$
$=\operatorname{VAR}(\mathrm{Y})+\mathrm{E}(\mathrm{N}-\mathrm{EN})^{2}+2 \mathrm{E}(\mathrm{N}-\mathrm{EN})(\mathrm{Y}-\mathrm{EY})$
$=\operatorname{VAR}(\mathrm{Y})+\operatorname{VAR}(\mathrm{N})+2 \operatorname{COV}(\mathrm{~N}, \mathrm{Y})$
$=\operatorname{VAR}(\mathrm{Y})+\operatorname{VAR}(\mathrm{N})$
$\mathrm{a}=\frac{\operatorname{COV}(X, Y)}{\operatorname{VAR}(X)}=\frac{\operatorname{VAR}(Y)}{\operatorname{VAR}(Y)+\operatorname{VAR}(N)}$
$\hat{Y}(X)=\mathrm{a}(\mathrm{X}-\mathrm{EX})+\mathrm{EY}=\frac{\frac{\operatorname{VAR}(Y)}{\operatorname{VAR}(N)}}{\frac{\operatorname{VAR}(Y)}{\operatorname{VAR}(N)}+1}(\mathrm{X}-\mathrm{EY})+\mathrm{EY}$

- $\frac{\operatorname{VAR}(Y)}{\operatorname{VAR}(N)}=$ SNR: signal-to-noise ratio
- If SNR $\rightarrow \infty$, then

X is a good measurement
$\hat{Y}(X)=X$

- If SNR $\ll 1$
$\hat{Y}(X)=E Y$
$\rho_{\mathrm{X}, \mathrm{Y}}$

$$
\begin{aligned}
& =\frac{(\operatorname{COV}(X, Y))^{2}}{\operatorname{VAR}(Y) \cdot \operatorname{VAR}(X)}=\frac{(\operatorname{VAR}(Y))^{2}}{\operatorname{VAR}(Y) \cdot(\operatorname{VAR}(Y)+\operatorname{VAR}(N))} \\
& =\frac{1}{1+\frac{\operatorname{VAR}(N)}{\operatorname{VAR}(Y)}}
\end{aligned}
$$

performance

$$
=\operatorname{VAR}(\mathrm{Y})\left(1-\rho_{\mathrm{X}, \mathrm{Y}^{2}}\right)=\frac{\operatorname{VAR}(N)}{1+\frac{\operatorname{VAR}(N)}{\operatorname{VAR}(Y)}}
$$

Extensions of Expectation to Vector, Matrix, and Complex-Valued Variables
$\mathrm{EM}=\left[\mathrm{EM}_{\mathrm{i}, \mathrm{j}}\right]$
$\mathrm{EX}=\left[\mathrm{EX}_{\mathrm{i}}\right]$
$\mathrm{Z}=\mathrm{X}+\mathrm{iY} \rightarrow \mathrm{EZ}=\mathrm{EX}+\mathrm{iEY}$

- $\mathrm{E}(\mathbf{A} \underline{\underline{X}}+\mathbf{B} \underline{\underline{Y}}+\underline{\mathrm{c}})=\mathbf{A E} \underline{\underline{X}}+\mathbf{B E} \underline{\underline{Y}}+\underline{\mathbf{c}}$

A is nonnegative definite matrix
$\leftrightarrow \underline{\mathrm{a}}^{\mathrm{T}} \mathbf{A} \underline{\mathrm{a}}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} a_{i} a_{j} \geq 0$
\leftrightarrow symmetrix and all its eigenvalues are nonnegative
Correlation Matrix: $\mathbf{R}_{\underline{x}}=\mathrm{E}\left(\underline{\mathrm{XX}}^{\mathrm{T}}\right)=\left[\mathrm{E}\left(\mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}}\right)\right]$

- symmetric

Cross-correlation Matrix: $\mathbf{R}_{\mathrm{X}, \mathrm{Y}}=\mathrm{E}\left(\mathrm{XY}^{\mathrm{T}}\right)=\left[\mathrm{E}\left(\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{j}}\right)\right]$

- not symmetric in general
- $\mathbf{R}_{\mathrm{X}, \mathrm{X}}=\mathbf{R}_{\underline{X}}$

Covariance Matrix:
$\mathbf{C}_{\mathrm{X}}=\mathrm{E}\left((\underline{\mathrm{X}}-\mathrm{E} \underline{\mathrm{X}})(\underline{\mathrm{X}}-\mathrm{EX})^{\mathrm{T}}\right)=\mathbf{R}_{\underline{X}}-(\mathrm{EX})(\mathrm{EX})^{\mathrm{T}}=\left[\mathrm{COV}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)\right]$
$=\operatorname{COV}(\underline{X}, \underline{X})$

- symmetric
- have $\operatorname{VAR}\left(\mathrm{X}_{\mathrm{i}}\right)$ on its diagonal line $\leftarrow \operatorname{COV}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}}\right)=\operatorname{VAR}\left(\mathrm{X}_{\mathrm{i}}\right)$

```
Cross-covariance Matrix:
COV(\underline{X},\underline{Y})=E((\underline{X}-E\underline{X})(\underline{Y}-\textrm{E}\underline{Y}\mp@subsup{)}{}{\textrm{T}})=[\operatorname{COV}(\mp@subsup{\textrm{X}}{\textrm{i}}{},\mp@subsup{Y}{\textrm{j}}{})]
```

- $\mathrm{EX}=0 \rightarrow \mathbf{R}_{\mathrm{X}}=\mathbf{C}_{\mathrm{X}}$
- \mathbf{A} is a \mathbf{R}_{X} or $\mathbf{C}_{X} \leftrightarrow \mathrm{~A}$ is nnd

Linear transformation

$\underline{Y}=\mathscr{Q} \underline{X}+\underline{b}$

- $E \underline{Y}=\$ E \underline{X}+\underline{b}$
- $5_{\mathrm{Y}}=\$ 5 \mathrm{X}^{\mathrm{T}}+\underline{\mathrm{bb}}^{\mathrm{T}}+\underline{\mathrm{b}}(\mathrm{EX})^{\mathrm{T}} \$^{\mathrm{T}}+\$(\mathrm{E} \underline{X}) \underline{)}^{\mathrm{T}}$
- $\& Y=\$ \& x \T
$\mathrm{X} \sim \mathrm{N}(\mathrm{m}, \mathrm{C}) \Rightarrow \mathrm{Y} \sim \mathrm{N}\left(\mathrm{Am}+\mathrm{b}, \mathrm{ACA}^{\mathrm{T}}\right)$
Wiener Filtering
Observe \underline{X} infer Y by $\hat{Y}(\underline{X})=\underline{a}^{\mathrm{T}} \underline{X}+b$
To minimize MSE
- $E \hat{Y}=E Y, b=E Y-\underline{a}^{T} E \underline{X}$
- orthogonality condition:
$\mathrm{E}(\mathrm{Y}-\hat{Y})\left(\mathrm{X}_{\mathrm{i}}-\mathrm{EX}_{\mathrm{i}}\right)=0$
$\mathrm{E}(\underline{X}-\mathrm{E} \underline{X})(\mathrm{Y}-\hat{Y})=0$
- $\mathrm{a}=\mathbf{C}_{\mathrm{X}}{ }^{-1} \mathrm{COV}(\underline{\mathrm{X}}, \mathrm{Y})$

Conditional Probability

(revised probability)
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})$: the conditional probability of A given B

- $\quad \mathrm{P}(\mathrm{A} \mid \mathrm{B}) \geq 0$
- $\mathrm{P}(\Omega \mid \mathrm{B})=1$
- $\mathrm{P}(\mathrm{B} \mid \mathrm{B})=1$
- $\quad \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B} \mid \mathrm{B})$
- $\quad \mathbf{A} \supset \mathbf{B} \rightarrow \mathbf{P}(\mathbf{A} \mid \mathrm{B})=\mathbf{1}$
- $\quad \mathrm{A}_{1} \perp \mathrm{~A}_{2} \rightarrow \mathrm{P}\left(\mathrm{A}_{1} \cup \mathrm{~A}_{2} \mid \mathrm{B}\right)=\mathrm{P}\left(\mathrm{A}_{1} \mid \mathrm{B}\right)+\mathrm{P}\left(\mathrm{A}_{2} \mid \mathrm{B}\right)$
- For fixed $B, P(. \mid B)$ is a probability measure
- $\mathrm{P}(\mathrm{A} \mid$.)
- $\mathrm{A} \perp \mathrm{B} \rightarrow \mathrm{P}(\mathrm{B} \mid \mathrm{A})=0$, and if $\mathrm{P}(\mathrm{B}) \neq 0, \mathrm{P}(\mathrm{A} \mid \mathrm{B})=0$

For $\mathrm{P}(\mathrm{B})>0$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{X}}(\mathrm{x} \mid \mathrm{B})=\mathrm{P}(\{\mathrm{X}: \mathrm{X} \leq \mathrm{x}\} \mid \mathrm{B})=\frac{P(\{X \leq x\} \cap B)}{P(B)}=\frac{\int_{-\infty}^{x} f\left(x^{\prime}\right) I_{B}\left(x^{\prime}\right) d x^{\prime}}{P(B)} \\
& f(x \mid B)=\frac{f(x) I_{B}(x)}{P(B)}= \begin{cases}\frac{f(x)}{P(B)} & \text { if } \mathrm{x} \in \mathrm{~B} \\
0 & \text { if otherwise }\end{cases}
\end{aligned}
$$

Markov Dependence
$\forall \mathrm{i}>1 ; P\left(A_{i} \bigcap_{j=1}^{i-1} A_{j}\right)=P\left(A_{i} \mid A_{i-1}\right)$
$P\left(\bigcap_{i=1}^{n} A_{i}\right)=P\left(A_{1}\right) \prod_{k=2}^{n} P\left(A_{k} \mid A_{k-1}\right)$
Ex - the successive orderings $\left\{\mathrm{A}_{\mathrm{i}}\right\}$ of a deck of cards in repeat shuffles
Discrete X, Discrete Y
$\mathbf{P}\left(\mathbf{Y}=\mathbf{y}_{\mathbf{i}} \mid \mathbf{X}=\mathbf{x}_{\mathbf{j}}\right)=\frac{P\left(Y=y_{i}, X=x_{j}\right)}{P\left(X=x_{j}\right)}$

$$
\mathbf{P}\left(\mathbf{Y}=\mathbf{y}_{\mathbf{i}}\right)=\sum_{j} P\left(Y=y_{i} \mid X=x_{j}\right) P\left(X=x_{j}\right)
$$

$\mathbf{P}\left(\mathbf{X}=\mathbf{x}_{\mathbf{j}} \mid \mathbf{Y}=\mathbf{y}_{\mathbf{i}}\right)=\frac{P\left(Y=y_{i} \mid X=x_{j}\right) P\left(X=x_{j}\right)}{P\left(Y=y_{i}\right)}$
$\mathrm{P}\left(\mathrm{Y}_{1}=\mathrm{y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}=\mathrm{y}_{\mathrm{n}}\right)=P\left(Y_{1}=y_{1}\right) \times \prod_{j=2}^{n} P\left(Y_{j}=y_{j} \mid Y_{1}=y_{1}, \ldots, Y_{j-1}=y_{j-1}\right)$

- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})+\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \mid \mathrm{B}\right)=1$
- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})+\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\mathrm{c}}\right)=$?
- $\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})+\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\mathrm{c}}\right) \mathrm{P}\left(\mathrm{B}^{\mathrm{c}}\right)=\mathrm{P}(\mathrm{A})$

Ex \quad S: BSC: binary symmetric channel
 $X, Y \in\{0,1\}$
 $\underset{\{0,1\}}{X} \rightarrow S \rightarrow \underset{\{0,1\}}{Y}$
 $\mathrm{P}(\mathrm{Y}=1-\mathrm{x} \mid \mathrm{X}=\mathrm{x})=\mathrm{p}$

- $\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{X}=0)=\mathrm{P}(\mathrm{Y}=0 \mid \mathrm{X}=1)=\mathrm{p}=\mathrm{P}($ error $)$
(Given)
- $\mathrm{P}(\mathrm{Y}=\mathrm{x} \mid \mathrm{X}=\mathrm{x})=1-\mathrm{p}$
$\mathrm{P}(\mathrm{Y}=0 \mid \mathrm{X}=0)=\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{X}=1)=1-\mathrm{p}$
- $\mathrm{P}(\mathrm{Y}=\mathrm{y})=\mathrm{P}(\mathrm{Y}=\mathrm{y} \mid \mathrm{X}=0) \times \mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{Y}=y \mid \mathrm{X}=1) \times \mathrm{P}(\mathrm{X}=1)$
- $\mathrm{P}(\mathrm{X}=0, \mathrm{Y}=0)=\mathrm{P}(\mathrm{Y}=0 \mid \mathrm{X}=0) \times \mathrm{P}(\mathrm{X}=0)$

$$
=(1-p) \times P(X=0)
$$

- $\mathrm{P}(\mathrm{X}=0 \mid \mathrm{Y}=0)=\frac{P(Y=0 \mid X=0) P(X=0)}{P(Y=0)}$
$=\frac{(1-p) \times P(X=0)}{(1-p) \times P(X=0)+p \times P(X=1)}$
- $\mathrm{P}(\mathrm{X}=1 \mid \mathrm{Y}=0)=1-\mathrm{P}(\mathrm{X}=0 \mid \mathrm{Y}=0)$
- $\mathrm{P}(\mathrm{X}=1 \mid \mathrm{Y}=1)=\frac{P(Y=1 \mid X=1) P(X=1)}{P(Y=1)}$

$$
\begin{aligned}
& =\frac{(1-p) \times P(X=1)}{(1-p) \times P(X=1)+p \times P(X=0)} \\
& =\frac{1}{1+\frac{p \times P(X=0)}{(1-p) \times P(X=1)}}
\end{aligned}
$$

Estimator $\hat{X}(\mathrm{Y})$ of X
$\mathrm{E}(\hat{X}-\mathrm{X})^{2}=(1) \mathrm{P}(\hat{X} \neq \mathrm{x})+(0) \mathrm{P}(\hat{X}=\mathrm{x})=\mathrm{P}(\hat{X} \neq \mathrm{x})=\mathrm{P}($ error $)$
Observe $\mathbf{Y}=1$

- Decide $\mathbf{X}=1$ if
$\mathbf{P}(\mathbf{X}=\mathbf{1} \mid \mathbf{Y}=\mathbf{1}) \geq \mathbf{P}(\mathbf{X}=\mathbf{0} \mid \mathbf{Y}=\mathbf{1})=1-\mathrm{P}(\mathrm{X}=1 \mid \mathrm{Y}=1)$
$\Rightarrow \mathrm{P}(\mathrm{X}=1 \mid \mathrm{Y}=1) \geq 0.5$
$\Rightarrow \frac{1}{1+\frac{p \times P(X=0)}{(1-p) \times P(X=1)}} \geq \frac{1}{2}$
$\Rightarrow \frac{p \times P(X=0)}{(1-p) \times P(X=1)} \leq 1$
$\Rightarrow \frac{p}{(1-p)} \leq \frac{P(X=1)}{P(X=0)} \Rightarrow$ not only depend on p
Ex Queue Buffer
- Buffer stores upto b bits
- State of buffer: $B_{t}=k_{t} ; 0 \leq k_{t} \leq b \Rightarrow k_{t}$ bits in buffer
- $\mathrm{B}_{\mathrm{t}} \rightarrow \mathrm{B}_{\mathrm{t}+1} \Rightarrow$ change k
- remove $\mathrm{r}_{\mathrm{t}+1}=\mathrm{r}$ bits/cycle from buffer ; if $\mathrm{k}_{\mathrm{t}}<\mathrm{r}$, empty the buffer
- add $\mathrm{L}_{\mathrm{t}}=$ length of $\mathrm{t}^{\text {th }}$ cycle packet

$\mathrm{P}\left(\mathrm{B}_{\mathrm{t}+1}=\mathrm{k}_{\mathrm{t}+1} \mid \mathrm{B}_{\mathrm{t}}=\mathrm{k}_{\mathrm{t}}\right)=$?

Want $\mathrm{k}_{\mathrm{t}+1}=\mathrm{k}_{\mathrm{t}}+\mathrm{L}_{\mathrm{t}+1}-\mathrm{r}_{\mathrm{t}+1}$
$\mathrm{P}\left(\mathrm{B}_{\mathrm{t}+1}=\mathrm{k}_{\mathrm{t}+1} \mid \mathrm{B}_{\mathrm{t}}=\mathrm{k}_{\mathrm{t}}\right)=\mathrm{P}\left(\mathrm{L}_{\mathrm{t}+1}=\mathrm{k}_{\mathrm{t}+1}-\mathrm{k}_{\mathrm{t}}+\mathrm{r}_{\mathrm{t}+1}\right)$

- = 0 if $k_{t}-r_{t+1}<0$ or $k_{t}-r_{t+1}>k_{t+1}$
- = 0 if $\mathrm{k}_{\mathrm{t}+1}>\mathrm{b}$ or $\mathrm{k}_{\mathrm{t}+1}<0$

Buffer overflow
$\mathrm{P}($ overflow $)=\mathrm{P}\left(\mathrm{k}_{\mathrm{t}+1}>\mathrm{b}\right)=\sum_{i=0}^{b} P\left(k_{t+1}>b \mid k_{t}=i\right) P\left(k_{t}=i\right)$
$=\sum_{i=0}^{b} P\left(L_{t+1}>b-i+r_{t+1}\right) P\left(k_{t}=i\right)$
Case of $\mathrm{P}(\mathrm{B})=0$
$\mathrm{P}\left(\mathrm{X}_{2} \in \mathrm{~A} \mid \mathrm{X}_{1}=\mathrm{x}_{1}\right)=\int f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) d x_{2}$

$$
\begin{aligned}
& f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}=\frac{\partial}{\partial x_{2}} F_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) \\
& F_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\int_{-\infty}^{x_{2}} f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) d x_{2}
\end{aligned}
$$

Continuous X , Continuous Y

Given $F_{X, Y}(x, y)$. Find $P(Y \in B \mid X \in A)$

- $F_{X}(x)=F_{X, Y}(x,+\infty)$
- Find $P(X \in A)$ from $F_{X}(x)$.
- Find $\mathrm{f}_{\mathrm{X}, \mathrm{Y}}(\mathrm{x}, \mathrm{y})$ from $\mathrm{F}_{\mathrm{X}, \mathrm{Y}}(\mathrm{x}, \mathrm{y})$.
- $\mathrm{P}(\mathrm{X} \in \mathrm{A}, \mathrm{Y} \in \mathrm{B})=\int_{B} \int_{A} f_{X, Y}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}$
- $\mathrm{P}(\mathrm{Y} \in \mathrm{B} \mid \mathrm{X} \in \mathrm{A})=\frac{P(X \in A, Y \in B)}{P(X \in A)}$
- $\mathrm{P}(\mathrm{Y} \in \mathrm{B} \mid \mathrm{X}=\mathrm{x})=\int_{B} f_{Y \mid X}\left(y^{\prime} \mid x\right) d y^{\prime}$
$=\lim _{\Delta x \rightarrow 0} P(Y \in B \mid x \leq X \leq x+\Delta x)$
$=\frac{\left(\int_{B} f_{X, Y}\left(x, y^{\prime}\right) d y^{\prime}\right) \Delta x}{f_{X}(x) \Delta x}=\frac{\int_{B} f_{X, Y}\left(x, y^{\prime}\right) d y^{\prime}}{f_{X}(x)}$
- $\mathrm{F}_{\mathrm{Y} \mid \mathrm{X}}(\mathrm{y} \mid \mathrm{X})=\frac{\int_{-\infty}^{y} f_{X, Y}\left(x, y^{\prime}\right) d y^{\prime}}{f_{X}(x)}$
- Conditional-probability density of Y given $\mathrm{X}=\mathrm{x}$:
$\mathrm{f}_{\mathrm{Y} \mid \mathrm{X}}(\mathrm{y} \mid \mathrm{x})=\frac{d}{d y} F_{Y \mid X}(y \mid x)$
$f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}$
- $f_{X, Y}(x, y)=f_{Y \mid X}(y \mid x) f_{X}(x)=f_{X \mid Y}(x \mid y) f_{Y}(y)$
$\mathrm{f}_{\mathrm{Y}}(\mathrm{y})=\int_{-\infty}^{\infty} f_{Y \mid X}(y \mid x) f_{X}(x) d x$
$f_{X \mid Y}(x \mid y)=\frac{f_{X}(x) f_{Y \mid X}(y \mid x)}{f_{Y}(y)}$
$f_{Y}=\frac{1}{\int_{-\infty}^{\infty} \frac{f_{X \mid Y}}{f_{Y \mid X}} d x}$
- $\int_{-\infty}^{\infty} f_{Y \mid X}\left(y^{\prime} \mid x\right) d y^{\prime}=1$

Binary Decision-Making

State of the world: Hypothesis

- $\quad \mathbf{H}_{0}=$ null hypothesis \rightarrow status quo \rightarrow target absent
- $\mathbf{H}_{1}=$ alternate hypothesis \rightarrow unique alternative to the status quo \rightarrow target present
Prior probability
- $\pi_{1}=\mathrm{P}\left(\mathrm{H}=\mathrm{H}_{1}\right)=\mathrm{P}\left(\mathrm{X}=\mathrm{H}_{1}\right)$
- $\pi_{0}=\mathrm{P}\left(\mathrm{H}=\mathrm{H}_{0}\right)=\mathrm{P}\left(\mathrm{X}=\mathrm{H}_{0}\right)$

$$
\pi_{1}+\pi_{0}=1
$$

Make a measurement $\mathrm{Y}, \mathrm{f}_{\mathrm{Y} \mid \mathrm{H}}\left(\mathrm{y} \mid \mathrm{H}=\mathrm{H}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{i}}(\mathrm{y}) \Rightarrow$ likelihood func.
Likelihood ratio : $\Lambda(\mathbf{y})=\frac{f_{Y \mid H}\left(y \mid H=H_{1}\right)}{f_{Y \mid H}\left(y \mid H=H_{0}\right)}=\frac{f_{1}(y)}{f_{0}(y)}$
Threshold : $\tau=\frac{P\left(H=H_{0}\right)}{P\left(H=H_{1}\right)}=\frac{\pi_{0}}{\pi_{1}}$
Discrete $\mathrm{X} \rightarrow$ Continuous Y
$\mathrm{f}_{\mathrm{Y}}(\mathrm{y})=\sum_{i=0}^{1} f_{Y \mid H}\left(y \mid H=H_{i}\right) P\left(H=H_{i}\right)=f_{1}(y) \pi_{1}+f_{0}(y) \pi_{0}$
posterior probability:
$\mathrm{P}\left(\mathrm{H}=\mathrm{H}_{\mathrm{i}} \mid \mathrm{Y}=\mathrm{y}\right)=\frac{f_{Y \mid H}\left(y \mid H=H_{i}\right) P\left(H=H_{i}\right)}{\sum_{i=0}^{1} f_{Y \mid H}\left(y \mid H=H_{i}\right) P\left(H=H_{i}\right)}=\frac{f_{i}(y) \pi_{i}}{f_{1}(y) \pi_{1}+f_{0}(y) \pi_{0}}$

- $\mathrm{P}\left(\mathrm{H}=\mathrm{H}_{1} \mid \mathrm{Y}=\mathrm{y}\right)+\mathrm{P}\left(\mathrm{H}=\mathrm{H}_{0} \mid \mathrm{Y}=\mathrm{y}\right)=1$

Decision rule: $\hat{X}(Y)= \begin{cases}H_{1} & ; y \in S_{1} \\ H_{0} & ; y \in S_{0}=S_{1}^{c}\end{cases}$

Minimum error probability design

\Rightarrow choose S_{0} to minimize $P(\hat{X}(Y) \neq H)$

$$
\begin{aligned}
P(\hat{X}(Y) \neq H) & =\pi_{0} P\left(\hat{X}(Y)=H_{1} \mid H=H_{0}\right)+\pi_{1} P\left(\hat{X}(Y)=H_{0} \mid H=H_{1}\right) \\
& =\pi_{0} P\left(Y \in S_{1} \mid H=H_{0}\right)+\pi_{1} P\left(Y \in S_{0} \mid H=H_{1}\right) \\
& =\pi_{0}\left(1-P\left(Y \in S_{0} \mid H=H_{0}\right)\right)+\pi_{1} P\left(Y \in S_{0} \mid H=H_{1}\right) \\
& =\pi_{0}-\pi_{0} \int_{S_{0}} f_{0}(y) d y+\pi_{1} \int_{S_{0}} f_{1}(y) d y \\
& =\pi_{0}+\int_{S_{0}}\left(\pi_{1} f_{1}(y)-\pi_{0} f_{0}(y)\right) d y \\
& =\pi_{0}+\pi_{1} \int_{S_{0}}(\Lambda(y)-\tau) f_{0}(y) d y
\end{aligned}
$$

Want $\mathrm{S}_{0}=\{\mathrm{y}: \Lambda(\mathrm{y})<\tau\}$

$$
\begin{aligned}
& \mathrm{S}_{1} \text { 's approach } \\
& P(\hat{X}(Y) \neq H)=\pi_{0} P\left(Y \in S_{1} \mid H=H_{0}\right)+\pi_{1} P\left(Y \in S_{0} \mid H=H_{1}\right) \\
& =\pi_{0} P\left(Y \in S_{1} \mid H=H_{0}\right)+\pi_{1}\left(1-P\left(Y \in S_{1} \mid H=H_{1}\right)\right) \\
& =\pi_{0} \int_{S_{1}} f_{0}(y) d y+\pi_{1}-\pi_{1} \int_{S_{1}} f_{1}(y) d y \\
& =\pi_{1}-\int_{S_{1}}\left(\pi_{1} f_{1}(y)-\pi_{0} f_{0}(y)\right) d y \\
& =\pi_{1}-\pi_{1} \int_{S_{1}}(\Lambda(y)-\tau) f_{0}(y) d y
\end{aligned}
$$

Want $S_{1}=\{y: \Lambda(y) \geq \tau\}$

$$
\begin{aligned}
\frac{\Lambda(y)}{\tau} & =\frac{\pi_{1} f_{Y \mid H}\left(y \mid H=H_{1}\right)}{\pi_{0} f_{Y \mid H}\left(y \mid H=H_{0}\right)}=\frac{\frac{\pi_{1} f_{Y \mid H}\left(y \mid H=H_{1}\right)}{f_{Y}(y)}}{\frac{\pi_{0} f_{Y \mid H}\left(y \mid H=H_{0}\right)}{f_{Y}(y)}} \\
& =\frac{P\left(H=H_{1} \mid Y=y\right)}{P\left(H=H_{0} \mid Y=y\right)}
\end{aligned}
$$

MAP (maximum a posteriori) rule

$\hat{X}(Y)=\mathrm{H}_{1}$ if

- $\mathrm{P}\left(\mathrm{H}=\mathrm{H}_{1} \mid \mathrm{Y}=\mathrm{y}\right) \geq \mathrm{P}\left(\mathrm{H}=\mathrm{H}_{0} \mid \mathrm{Y}=\mathrm{y}\right)$
- $\mathbf{P}\left(\mathbf{H}=\mathrm{H}_{1} \mid \mathbf{Y}=\mathrm{y}\right) \geq \mathbf{0 . 5}$
and $=\mathrm{H}_{0}$ otherwise
performance $=P(\hat{X}(Y) \neq H)$
Hypothesis Testing
Have no information about the prior probabilities $\mathrm{P}\left(\mathrm{H}=\mathrm{H}_{\mathrm{i}}\right)$
(Does not know τ)
Know Λ (y)
Error
- P_{FA} : False alarm : decide $\hat{X}(Y)=\mathrm{H}_{1}$ when $\mathrm{X}=\mathrm{H}_{0}$ $=\int_{S_{1}} f_{0}(y) d y$
- Missed detection : decide $\hat{X}(Y)=\mathrm{H}_{0}$ when $\mathrm{X}=\mathrm{H}_{1}$

Neyman-pearson Rule :

maximize P_{D} subject to the upper bound α on $P_{F A}$

- $\alpha=$ size of the statistical test $=$ fixed P_{FA}
$=\mathrm{P}\left(\left(\hat{X}(Y)=\mathrm{H}_{1} \mid \mathrm{X}=\mathrm{H}_{0}\right)\right.$
- detection probability $=P_{D}=\beta=$ power of the test
$=\mathrm{P}\left(\hat{X}(Y)=\mathrm{H}_{1} \mid \mathrm{X}=\mathrm{H}_{1}\right)=\int_{S_{1}} f_{1}(y) d y$
- Generally,
- $\alpha=1 \Leftrightarrow \beta=1$
- $\alpha=0 \Leftrightarrow \beta=0$ (>0 possible)

NP Solution

When $(\forall \mathrm{i} \forall \mathrm{c}) \mathrm{P}\left(\Lambda(\mathrm{y})=\mathrm{c} \mid \mathrm{H}_{\mathrm{i}}\right)=0$,
the decision rule: $\hat{X}(Y)= \begin{cases}H_{1} & \text { if } \Lambda(y) \geq \tau \\ H_{0} & \text { if } \Lambda(y)<\tau\end{cases}$
has the highest P_{D} among all decision rules having $\mathrm{P}_{\mathrm{FA}} \leq \alpha$
\Rightarrow likelihood-ratio-threshold rule

- $\mathrm{P}\left(\Lambda(\mathrm{y}) \geq \tau \mid \mathrm{H}_{0}\right)$
- is a continuous nonincreasing function of τ
- $\tau=0 \rightarrow \mathrm{P}_{\mathrm{D}}=1$
- $\tau=\infty \rightarrow P_{D}=0$
- For any $0<\alpha<1$,
there is $\tau=\tau_{\alpha}$ such that $\mathrm{P}\left(\Lambda(\mathrm{y}) \geq \tau \mid \mathrm{H}_{0}\right)=\alpha$
- $\quad \mathrm{P}_{\mathrm{D}}=\mathrm{P}\left(\Lambda(\mathrm{y}) \geq \tau \mid \mathrm{H}_{1}\right)$
- $\mathrm{P}_{\mathrm{D}} \geq \mathrm{P}_{\mathrm{FA}}$
$\hat{X}(Y)=\mathrm{H}_{1}$ if $\Lambda(\mathrm{y}) \geq \tau_{\alpha}$
Solve for τ_{α} from $\mathrm{P}_{\mathrm{FA}}=\alpha=\int_{\left\{\Lambda(y) \geq \tau_{\alpha}\right\}} f_{0}(y) d y$

ROC : Receiver Operating Characteristic

$\Rightarrow P_{D}=\rho\left(P_{F A}\right)$

- $\rho\left(\mathrm{P}_{\mathrm{FA}}\right)$ is a concave function
- $\rho^{\prime}\left(\mathrm{P}_{\mathrm{FA}}\right)=\tau_{\alpha}$

Additive measurement noise

$\mathrm{Y}=\mathrm{S}+\mathrm{N}$

Assumption: S, N are independent \Rightarrow independent additive noise $\mathrm{f}_{\mathrm{S}, \mathrm{N}}(\mathrm{s}, \mathrm{n})=\mathrm{f}_{\mathrm{S}}(\mathrm{s}) \mathrm{f}_{\mathrm{N}}(\mathrm{n})$
$\binom{S}{N} \rightarrow\binom{S}{Y}=\binom{S}{S+N} ;|J|=\left|\begin{array}{cc}\frac{\partial}{\partial s} s & \frac{\partial}{\partial y} s \\ \frac{\partial}{\partial s} y-s & \frac{\partial}{\partial y} y-s\end{array}\right|=\left|\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right|=1$
$\mathrm{f}_{\mathrm{S}, \mathrm{Y}}(\mathrm{s}, \mathrm{y})=\mathrm{f}_{\mathrm{S}, \mathrm{N}}(\mathrm{s}, \mathrm{y}-\mathrm{s})=\mathrm{f}_{\mathrm{S}}(\mathrm{s}) \mathrm{f}_{\mathrm{N}}(\mathrm{y}-\mathrm{s})$
$f_{Y \mid S}(y \mid s)=\frac{f_{S, Y}(s, y)}{f_{S}(s)}=\frac{f_{S}(s) f_{N}(y-s)}{f_{S}(s)}=f_{N}(y-s)$
Can also get this from
$\mathrm{F}_{\mathrm{Y} \mid \mathrm{S}}(\mathrm{y} \mid \mathrm{s})$
$=\mathrm{P}(\mathrm{Y} \leq y \mid \mathrm{S}=\mathrm{s})=\mathrm{P}(\mathrm{S}+\mathrm{N} \leq y \mid \mathrm{S}=\mathrm{s})=\mathrm{P}(\mathrm{s}+\mathrm{N} \leq \mathrm{y} \mid \mathrm{S}=\mathrm{s})=\mathrm{P}(\mathrm{N} \leq \mathrm{y}-\mathrm{s} \mid \mathrm{S}=\mathrm{s})$
By independent assumption
$\mathrm{P}(\mathrm{N} \leq \mathrm{y}-\mathrm{s} \mid \mathrm{S}=\mathrm{s})=\mathrm{P}(\mathrm{N} \leq \mathrm{y}-\mathrm{s})=\mathrm{F}_{\mathrm{Y} \mid \mathrm{S}}(\mathrm{y} \mid \mathrm{s})=\mathrm{P}(\mathrm{N} \leq \mathrm{y}-\mathrm{s})=\mathrm{F}_{\mathrm{N}}(\mathrm{y}-\mathrm{s})$
$\mathbf{f}_{\mathbf{Y} \mid \mathbf{S}}(\mathbf{y} \mid \mathbf{s})=\mathbf{f}_{\mathrm{N}}(\mathbf{y}-\mathbf{s})$
$\mathrm{f}_{\mathrm{Y}}(\mathrm{y})=\int_{-\infty}^{\infty} f_{S, Y}(s, y) d s=\int_{-\infty}^{\infty} f_{N}(y-s) f_{S}(s) d s=f_{N}(y) * f_{S}(y)$
$f_{S \mid Y}(s \mid y)=\frac{f_{Y \mid S}(y \mid s) f_{S}(s)}{\int_{-\infty}^{\infty} f_{Y \mid S}\left(y \mid s^{\prime}\right) f_{S}\left(s^{\prime}\right) d s^{\prime}}=\frac{f_{N}(y-s) f_{S}(s)}{\int_{-\infty}^{\infty} f_{N}\left(y-s^{\prime}\right) f_{S}\left(s^{\prime}\right) d s^{\prime}}$
Infer S by value $\hat{S}(Y)=\arg \max \left\lfloor f_{S \mid Y}(s \mid y)\right]$
$=\underset{s}{\arg \max }\left[\frac{f_{N}(y-s) f_{S}(s)}{f_{Y}(y)}\right]=\underset{s}{\arg \max }\left[f_{N}(y-s) f_{S}(s)\right]$
Assume $\mathbf{N} \sim \mathbf{N}\left(0, \sigma_{\mathrm{n}}{ }^{2}\right)$ and $\mathrm{X} \sim \mathbf{N}\left(\mathrm{m}_{\mathrm{x}}, \boldsymbol{\sigma}_{\mathrm{x}}{ }^{2}\right)$
$\mathrm{EY}=\mathrm{ES}+\mathrm{EN}=\mathrm{ES}$

$$
\begin{aligned}
\hat{S}(Y) & =\underset{s}{\arg \max }\left[\frac{1}{\sigma_{n} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{(y-s)-\left(m_{y}-m_{s}\right)}{\sigma_{n}}\right)^{2}} \frac{1}{\sigma_{s} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{s-m_{s}}{\sigma_{s}}\right)^{2}}\right] \\
& =\underset{s}{\arg \min }\left[\left(\frac{(y-s)}{\sigma_{n}}\right)^{2}+\left(\frac{S-m_{s}}{\sigma_{s}}\right)^{2}\right] \\
& =\frac{\sigma_{n}^{2} m_{s}+\sigma_{s}^{2} y}{\sigma_{n}^{2}+\sigma_{s}^{2}}=\frac{m_{s}+(S N R) y}{1+(S N R)}
\end{aligned}
$$

- \quad SNR $\rightarrow 0 \Rightarrow \hat{S}(Y)=\mathrm{m}_{\mathrm{s}} \Rightarrow$ ignore the measurement
- SNR $\rightarrow \infty \Rightarrow \hat{S}(Y)=\mathrm{y} \Rightarrow$ ignore noise (good measurements)

If

- $f_{N}(n)$ is a sharply peaked function
- $\mathrm{f}_{\mathrm{s}}(\mathrm{s})$ is slowly varying
then
$\hat{S}(Y) \approx \arg \max \left[f_{N}(y-s)\right] \rightarrow$ not require $\mathrm{f}_{\mathrm{S}}(\mathrm{s})$

$$
\begin{aligned}
& \text { maximum likelihood (ML) rule } \\
& \tilde{S}(Y)=\underset{s}{\arg \max }\left[f_{N}(y-s)\right] \\
& \text { Multivariable } \\
& P\left(Y_{1}^{n} \in A \mid X_{1}^{m}=x_{1}^{m}\right)=\int_{A} f_{Y_{1}^{n} \mid X_{1}^{m}}\left(y_{1}^{n} \mid x_{1}^{m}\right) d y_{1} \ldots d y_{n} \\
& \frac{\partial^{n}}{\partial y_{1} \ldots \partial y_{n}} F_{Y_{1}^{n} \mid X_{1}^{m}}\left(y_{1}^{n} \mid x_{1}^{m}\right)=f_{Y_{1}^{n} \mid X_{1}^{m}}\left(y_{1}^{n} \mid x_{1}^{m}\right) \\
& \hline
\end{aligned}
$$

Conditional CDF
$F_{Y_{1}^{n} \mid X_{1}^{m}}\left(y_{1}^{n} \mid x_{1}^{m}\right)=\int_{-\infty}^{y_{1}} d y_{1}^{\prime} \cdots \int_{-\infty}^{y_{n}} d y_{n}^{\prime} f_{Y_{1}^{n} \mid X_{1}^{m}}\left(y_{1}^{\prime n} \mid x_{1}^{m}\right)$
$F_{Y_{1}^{n} \mid X_{1}^{m}}\left(y_{1}^{n} \mid x_{1}^{m}\right)=\int_{-\infty}^{v} d y_{1}^{\prime} \cdots \int_{-\infty}^{y_{n}} d y_{n}^{\prime} \frac{f_{X_{1}^{m}, Y_{1}^{n}}\left(x_{1}^{m}, y_{1}^{\prime n}\right)}{f_{X_{1}^{m}}\left(x_{1}^{m}\right)}$

Product/independent model:

$$
\begin{aligned}
f_{X_{1}^{m}, Y_{1}^{n}}\left(x_{1}^{m}, y_{1}^{n}\right) & =\left(\prod_{i=1}^{m} f_{X_{i}}\left(x_{i}\right)\right) \cdot\left(\prod_{i=1}^{n} f_{Y_{i}}\left(y_{i}\right)\right) \\
f_{Y_{1}^{n} \mid X_{1}^{m}}\left(y_{1}^{n} \mid x_{1}^{m}\right) & =\frac{f_{X_{1}^{m}, Y_{1}^{n}}\left(x_{1}^{m}, y_{1}^{n}\right)}{f_{X_{1}^{m}}\left(x_{1}^{m}\right)}=\frac{\left(\prod_{i=1}^{m} f_{X_{i}}\left(x_{i}\right)\right) \cdot\left(\prod_{i=1}^{n} f_{Y_{i}}\left(y_{i}\right)\right)}{\left(\prod_{i=1}^{m} f_{X_{i}}\left(x_{i}\right)\right)} \\
& =\prod_{i=1}^{n} f_{Y_{i}}\left(y_{i}\right)
\end{aligned}
$$

Markov Dependence: $(\forall \mathrm{i}>1) f_{X_{i} \mid X_{1}^{i-1}}=f_{X_{i} \mid X_{i-1}}$

- $\mathrm{m}>0 \rightarrow f_{X_{m+1}^{n} \mid X_{1}^{m}}=\prod_{i=m+1}^{n} f_{X_{i} \mid X_{i-1}}$

Independence

unlinked :

- without a causal connection in a physical setting
- without one outcome being informative about another outcome in an information-theoretic or belief-based setting

```
P}[\textrm{X}\in\textrm{A},\textrm{Y}\in\textrm{B}]=\textrm{P}[X\in\textrm{A}] \textrm{P}[\textrm{Y}\in\textrm{B}
P[X\leqx, Y < y = P[X m ] P[Y <y]
F
P[X=\mp@subsup{x}{i}{},Y=\mp@subsup{y}{i}{}]=P[X=\mp@subsup{x}{i}{}] P[Y=\mp@subsup{y}{i}{}]
two variables
A and B are independent : A\PerpB
\LeftrightarrowP(A\capB)=P(A)P(B)
```

- $A \Perp B$ if and only if either
- $\mathrm{P}(\mathrm{A})=0$ or
- $\mathrm{P}(\mathrm{B})=0$ or
- $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B})$ and $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A})$
- $\quad \mathrm{A} \Perp \mathrm{B} \& \mathrm{P}(\mathrm{B})>0 \rightarrow \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A})$
$\mathrm{B} \Perp \mathrm{A} \& \mathrm{P}(\mathrm{A})>0 \rightarrow \mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B})$
- $B \Perp A \Leftrightarrow A \Perp B$
- $\quad(A \Perp A \Leftrightarrow P(A)=0$ or 1 : trivial $) \Rightarrow \forall B, A \Perp B$
- $P(A)=P(A)^{2}$
- Ex. \varnothing, Ω is independent of all other events
- $\mathrm{P}(\mathrm{A})=0$ or $1 \Leftrightarrow \mathrm{~A} \Perp \mathrm{~B}$ and $\mathrm{A} \perp \mathrm{B}$
- $A \Perp B \Leftrightarrow A \Perp B^{c} \Leftrightarrow A^{c} \Perp B \Leftrightarrow A^{c} \Perp B^{c}$
- $\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B})+\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}\right)$

$$
\mathrm{P}\left(\mathrm{~A}^{\mathrm{c}} \cap \mathrm{~B}\right)=\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B})=\mathrm{P}\left(\mathrm{~A}^{\mathrm{c}}\right) \mathrm{P}(\mathrm{~B})
$$

- two events are nontrivially independent only if they overlap properly
- $A \perp B \& A \Perp B \Rightarrow P(A)=0$ or $P(B)=0$
- If $\mathrm{P}(\mathrm{A}) \neq 0$ and $\mathrm{P}(\mathrm{B}) \neq 0$, then A and B cannot be both mutually exclusive and statistically independent.
- $A \subset B \& A \Perp B \Rightarrow P(A)=0$ or $P(B)=1$
- if $\|\Omega\|<4$, then there are no nontrivially independent events
- For $\|\Omega\|=3$, if $\mathrm{A}=\left\{\omega_{1}\right\}$, then
- $\mathrm{B}=\left\{\omega_{2}\right\}$ or $\left\{\omega_{3}\right\}$ or $\left\{\omega_{2}, \omega_{3}\right\} \rightarrow \mathrm{A} \perp \mathrm{B}$
- $\mathrm{B}=\left\{\omega_{1}, \omega_{2}\right\}$ or $\left\{\omega_{1}, \omega_{3}\right\} \rightarrow \mathrm{A} B$
- Independence implies a lack of covariance
- It is not the case that a lack of covariance always implies independence because covariance only measures linear association.
- $\quad \Perp$ and \perp
- A and A^{c} are mutually exclusive. However, they are not independent (since if one occurs, the other cannot).
- The null event is statistically independent of any other event.
- $\mathrm{P}(\mathrm{A})=0 \Rightarrow \mathrm{~A}$ is statistically independent of any other event B in that sample space.

Multivariable

Boolean function $\mathrm{f}\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}\right)=\mathrm{F}$ is constructed through iterated use of Boolean set operations of complementation, union, or intersection
events $\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right\}$ are mutually independent: $\coprod_{1}^{n} A_{i} \Leftrightarrow$
$(\forall I \subset\{1, \ldots, n\}) \quad P\left(\bigcap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right)$
The event $A_{1}, A_{2}, \ldots, A_{n}$ are said to be mutually independent if and only if the relations
$\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \cap \mathrm{A}_{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right)$
$\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \cap \mathrm{A}_{\mathrm{j}} \cap \mathrm{A}_{\mathrm{k}}\right)=\mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{A}_{\mathrm{j}}\right) \mathrm{P}\left(\mathrm{A}_{\mathrm{k}}\right)$
$\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~A}_{2} \cap \ldots \cap \mathrm{~A}_{\mathrm{n}}\right)=\mathrm{P}\left(\mathrm{A}_{1}\right) \mathrm{P}\left(\mathrm{A}_{2}\right) \cdots \mathrm{P}\left(\mathrm{A}_{\mathrm{n}}\right)$
Hold for all combinations of the indices such that
$1 \leq \mathrm{i}<\mathrm{j}<\mathrm{k}<\ldots \leq \mathrm{n}$

- trivially true for $\|\mathrm{I}\|<2$
- $\quad(\forall I \subset\{1, \ldots, n\})(\forall j \notin I) \quad P\left(A_{j} \bigcap_{i \in I} A_{i}\right)=P\left(A_{j}\right)$
- symmetrical \Rightarrow ordering of events is irrelevant
- Let $\mathrm{B}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}}$ or $\mathrm{A}_{\mathrm{i}}{ }^{\mathrm{c}}, \coprod_{1}^{n} A_{i} \Leftrightarrow \coprod_{1}^{n} B_{i}$
- Given two nonoverlaping collections of event drawn from a larger collection of mutually independent events,
the two new set, formed by choosing arbitrary
Boolean functions defined on the two collections,
will themselves be independent

Assume $\coprod_{1}^{n} A_{i}$

- occurrence of all of these events

$$
P\left(\bigcap_{1}^{n} A_{i}\right)=\prod_{1}^{n} P\left(A_{i}\right)
$$

- non-occurrence of all of them

$$
P\left(\bigcap_{1}^{n} A_{i}^{c}\right)=\prod_{1}^{n} P\left(A_{i}^{c}\right)=\prod_{1}^{n}\left(1-P\left(A_{i}\right)\right)
$$

- occurrence of at least one of them
$P\left(\bigcup_{1}^{n} A_{i}\right)=1-P\left(\bigcap_{1}^{n} A_{i}^{c}\right)=1-\prod_{1}^{n} P\left(A_{i}^{c}\right)=1-\prod_{1}^{n}\left(1-P\left(A_{i}\right)\right)$
- occurrence of exactly one event, no matter which one

$$
\begin{aligned}
P\left(\bigcup_{i=1}^{n}\left(A_{i} \cap \bigcap_{j \neq i} A_{j}^{c}\right)\right) & =\sum_{i=1}^{n} P\left(\left(A_{i} \cap \bigcap_{j \neq i} A_{j}^{c}\right)\right) \\
& =\sum_{i=1}^{n} P\left(A_{i}\right) \prod_{j \neq j}\left(1-P\left(A_{j}\right)\right) \\
& =\left(\prod_{i=1}^{n}\left(1-P\left(A_{i}\right)\right)\left(\sum_{k=1}^{n} \frac{P\left(A_{k}\right)}{1-P\left(A_{k}\right)}\right)\right.
\end{aligned}
$$

Independent experiments

Suppose that we are concerned with the outcomes of n different experiment $\mathcal{E}_{1}, \mathcal{E}_{2}, \ldots, \mathcal{E}_{\mathrm{n}}$.
Suppose further that the sample space Ω_{k} of the $\mathrm{k}^{\text {th }}$ of these n experiments is partitioned by the m_{k} events $A_{k i}, \mathrm{i}_{\mathrm{k}}=1,2, \ldots, \mathrm{~m}_{\mathrm{k}}$.
The n given experiments are then said to be statistically independent if and only if the equation
$P\left(A_{1_{i}} \bigcap A_{2 i_{2}} \bigcap \ldots \bigcap A_{n i_{n}}\right)=P\left(A_{1 i_{1}}\right) P\left(A_{2 i_{2}}\right) \cdots P\left(A_{n i_{n}}\right)$
holds for every possible set of n integers $\left\{\mathrm{i}, \mathrm{i}_{2} \quad{ }_{\mathrm{n}}\right\}$, where the ${ }_{k}$ ranges from 1 to m

- $F_{X_{a}^{b}}\left(x_{a}^{b}\right)=F_{X_{a}, X_{a+1}, \ldots, X_{b}}\left(x_{a}, x_{a+1}, \ldots, x_{b}\right) ; \mathrm{b} \quad \mathrm{a}$

$$
F_{X_{a}^{a}}\left(x_{a}^{a}\right)=F_{X_{a}}\left(x_{a}\right)
$$

individual random experiments $\mathrm{E}, \ldots, \mathrm{E}_{\mathrm{n}}$ independent

$$
\coprod_{i=1}^{n} X_{i}
$$

$\Leftrightarrow F_{X_{1}^{n}}\left(x_{1}^{n}\right)=\prod_{i=1}^{n} F_{X_{i}}\left(x_{i}\right)$
$\Leftrightarrow f_{X_{1}^{n}}\left(x_{1}^{n}\right)=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right)$
$\Leftrightarrow f_{X_{m+1}^{n} \mid X_{1}^{m}}\left(x_{m+1}^{n} \mid x_{1}^{m}\right)=f_{X_{m+1}^{n}}\left(x_{m+1}^{n}\right) ; \forall(\mathrm{m}, \mathrm{n})$
$\Leftrightarrow \mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}}\right)=\prod_{i=1}^{n} P\left(X_{i}=x_{i}\right)$

- $E\left(\prod_{1}^{n} X_{i}\right)=\prod_{1}^{n} E X_{i}$
- $E\left(\prod_{1}^{n} h_{i}\left(X_{i}\right)\right)=\prod_{1}^{n} E h_{i}\left(X_{i}\right)$
- $E\left(X_{i} X_{j}\right)= \begin{cases}E X_{i} E X_{j} & i \neq j \\ E X_{i}^{2} & i=j\end{cases}$
- independence \rightarrow uncorrelatedness (the converse fails)
- two random variables can be uncorrelated even though the one determines the other

i.i.d : independent and identically distributed

\Rightarrow mutually independent and have a common F_{X}
$\Rightarrow(\forall \mathrm{i}) \quad F_{X_{i}}(x)=F_{X}(x)$

- $f_{X_{1}^{n}}\left(x_{1}^{n}\right)=\prod_{i=1}^{n} f_{X}\left(x_{i}\right)$
- $\mathrm{P}\left(\mathrm{X}_{1}=\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}}\right)=\prod_{i=1}^{n} P\left(X=x_{i}\right)$

Let
X be a two-dimentional random vector $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ whose components X_{1} and X_{2} are independent random variables.
Let
Y be the two-dimensional random vector $\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}\right)$ whose components are the random variables
$\mathrm{Y}_{1}=\mathrm{g}_{1}\left(\mathrm{X}_{1}\right)$ and
$\mathrm{Y}_{2}=\mathrm{g}_{2}\left(\mathrm{X}_{2}\right)$
respectively
where g_{1} and g_{2} are Borel functions defined on $\Omega_{\mathrm{X} 1}$ and $\Omega_{\mathrm{X} 2}$ respectively
\rightarrow
random variables Y_{1} and Y_{2} are statistically independent.
Maxima and Minima of Random Variables
$\mathrm{Y}=\min \mathrm{X}_{\mathrm{i}}$
$\mathrm{Z}=\max \mathrm{X}_{\mathrm{i}}$
$\mathrm{F}_{\mathrm{Z}}(\mathrm{z})=\mathrm{P}(\mathrm{Z} \leq \mathrm{z})=\mathrm{P}\left(\max \mathrm{X}_{\mathrm{i}} \leq \mathrm{z}\right)=\mathrm{P}\left((\forall \mathrm{i}) \mathrm{X}_{\mathrm{i}} \leq \mathrm{z}\right)=P\left(\bigcap_{i} A_{i}\right)$
A_{i} is the event that $\mathrm{X}_{\mathrm{i}} \leq \mathrm{z} \rightarrow$ i.i.d
$\mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right)=F_{X_{i}}(z)=F_{X}(z)$
$F_{Z}(z)=P\left(\bigcap_{i} A_{i}\right)=\prod_{i} P\left(A_{i}\right)=\left(F_{X}(z)\right)^{n}$
$f_{Z}(z)=n\left(F_{X}(z)\right)^{n-1} f_{X}(z)$
For large n,
assume median μ_{Z} to be large
$\rightarrow \mathrm{F}_{\mathrm{X}}\left(\mu_{\mathrm{Z}}\right) \approx 1$
$\mathrm{F}_{\mathrm{Z}}\left(\mu_{\mathrm{Z}}\right)=\frac{1}{2}=e^{-\ln 2}$
$=\left(F_{X}\left(\mu_{\mathrm{Z}}\right)\right)^{\mathrm{n}}=\left(1-\left(1-\mathrm{F}_{\mathrm{X}}\left(\mu_{\mathrm{Z}}\right)\right)^{\mathrm{n}}=(1-\mathrm{x})^{\mathrm{n}}\right.$
$\approx \mathrm{e}^{-\mathrm{x}}=e^{-n\left(1-F_{x}\left(\mu_{z}\right)\right)}$
$\mathrm{F}_{\mathrm{X}}\left(\mu_{\mathrm{Z}}\right)=1-\frac{\ln 2}{n}$
$\mathrm{F}_{\mathrm{Y}}(\mathrm{y})=\mathrm{P}(\mathrm{Y} \leq \mathrm{y})=\mathrm{P}\left(\min \mathrm{X}_{\mathrm{i}} \leq \mathrm{y}\right)=\mathrm{P}\left((\exists \mathrm{i}) \mathrm{X}_{\mathrm{i}} \leq \mathrm{z}\right)=P\left(\bigcup_{i} A_{i}\right)$
$=1-P\left(\bigcap_{i} A_{i}^{c}\right)=1-\prod_{i} P\left(A_{i}^{c}\right)=1-\left(1-F_{X}(y)\right)^{n}$
$f_{Y}(y)=n\left(1-F_{X}(y)\right)^{n-1} f_{X}(y)$
For large $\mathrm{n}, \mathrm{F}_{\mathrm{X}}\left(\mu_{\mathrm{Y}}\right)$ will be small
$\mathrm{F}_{\mathrm{Y}}\left(\mu_{\mathrm{Y}}\right)=\frac{1}{2}=e^{-\ln 2}$
$=1-\left(1-\mathrm{F}_{\mathrm{X}}\left(\mu_{\mathrm{Y}}\right)\right)^{\mathrm{n}}=1-(1-\mathrm{x})^{\mathrm{n}} \approx 1-\mathrm{e}^{-\mathrm{x}}=1-e^{-n F_{X}\left(\mu_{\mathrm{Y}}\right)}$
$\mathrm{F}_{\mathrm{X}}\left(\mu_{\mathrm{Y}}\right)=\frac{\ln 2}{n}$

